These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34356739)
1. In Vitro Antifungal Activity and Toxicity of Dihydrocarvone-Hybrid Derivatives against Díaz K; Werner E; Besoain X; Flores S; Donoso V; Said B; Caro N; Vega E; Montenegro I; Madrid A Antibiotics (Basel); 2021 Jul; 10(7):. PubMed ID: 34356739 [TBL] [Abstract][Full Text] [Related]
2. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits. Amiri A; Holb IJ; Schnabel G Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034 [TBL] [Abstract][Full Text] [Related]
3. Design and synthesis aldehydes-thiourea and thiazolyl hydrazine derivatives as promising antifungal agents against Monilinia fructicola. Wang YR; Yang L; Wang DT; Li AP; Zhang SY; Qin LL; Bian Q; Zhang ZJ; Ding YY; Zhou H; Peng D; Wang GH; Liu YQ Pest Manag Sci; 2024 Oct; ():. PubMed ID: 39387322 [TBL] [Abstract][Full Text] [Related]
4. Control of Peach Brown Rot Disease Produced by Madrid A; Silva V; Reyes C; Werner E; Besoain X; Montenegro I; Muñoz E; Díaz K J Fungi (Basel); 2024 Aug; 10(9):. PubMed ID: 39330369 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis, antifungal activity, and structure-activity relationship studies of chalcones and hybrid dihydrochromane-chalcones. Mellado M; Espinoza L; Madrid A; Mella J; Chávez-Weisser E; Diaz K; Cuellar M Mol Divers; 2020 Aug; 24(3):603-615. PubMed ID: 31161394 [TBL] [Abstract][Full Text] [Related]
6. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit. Liu C; Yin X; Wang Q; Peng Y; Ma Y; Liu P; Shi J J Sci Food Agric; 2018 Dec; 98(15):5756-5763. PubMed ID: 29756313 [TBL] [Abstract][Full Text] [Related]
7. Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola. Ni M; Wu Q; Wang HL; Liu WC; Hu B; Zhang DP; Zhao J; Liu DW; Lu CG J Zhejiang Univ Sci B; 2019 Jan.; 20(1):84-94. PubMed ID: 30614232 [TBL] [Abstract][Full Text] [Related]
8. Antifungal activity of volatile organic compounds from essential oils against the postharvest pathogens Álvarez-García S; Moumni M; Romanazzi G Front Plant Sci; 2023; 14():1274770. PubMed ID: 37860258 [TBL] [Abstract][Full Text] [Related]
9. Antifungal mechanisms of lavender essential oil in the inhibition of rot disease caused by Xiong X; Zhang L; Li X; Zeng Q; Deng R; Ren X; Kong Q Can J Microbiol; 2021 Oct; 67(10):724-736. PubMed ID: 34153193 [TBL] [Abstract][Full Text] [Related]
10. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum. Lazar EE; Wills RB; Ho BT; Harris AM; Spohr LJ Lett Appl Microbiol; 2008 Jun; 46(6):688-92. PubMed ID: 18444976 [TBL] [Abstract][Full Text] [Related]
11. Design, synthesis and antifungal activity of novel amide derivatives containing a pyrrolidine moiety as potential succinate dehydrogenase inhibitors. Luo X; Chen Y; Wang Y; Xing Z; Peng J; Chen J Mol Divers; 2024 Apr; 28(2):805-816. PubMed ID: 36787084 [TBL] [Abstract][Full Text] [Related]
12. Heterocyclic lactam derivatives containing piperonyl moiety as potential antifungal agents. Wang S; Bao L; Song D; Wang J; Cao X Bioorg Med Chem Lett; 2019 Oct; 29(20):126661. PubMed ID: 31515187 [TBL] [Abstract][Full Text] [Related]
13. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Grzegorczyk M; Żarowska B; Restuccia C; Cirvilleri G Food Microbiol; 2017 Feb; 61():93-101. PubMed ID: 27697174 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of Monilinia fructicola from Brazil to Tebuconazole, Azoxystrobin, and Thiophanate-Methyl and Implications for Disease Management. May-De Mio LL; Luo Y; Michailides TJ Plant Dis; 2011 Jul; 95(7):821-827. PubMed ID: 30731745 [TBL] [Abstract][Full Text] [Related]
15. Zhou M; Li P; Wu S; Zhao P; Gao H Front Microbiol; 2019; 10():1804. PubMed ID: 31440224 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic plasticity of Monilinia spp. in response to light wavelengths: From in vitro development to virulence on nectarines. Verde-Yáñez L; Vall-Llaura N; Usall J; Teixidó N; Torres R Int J Food Microbiol; 2022 Jul; 373():109700. PubMed ID: 35580409 [TBL] [Abstract][Full Text] [Related]
17. A Rapid Method to Quantify Fungicide Sensitivity in the Brown Rot Pathogen Monilinia fructicola. Cox KD; Quello K; Deford RJ; Beckerman JL Plant Dis; 2009 Apr; 93(4):328-331. PubMed ID: 30764225 [TBL] [Abstract][Full Text] [Related]
18. Trialkylamine Derivatives Containing a Triazole Moiety as Promising Ergosterol Biosynthesis Inhibitor: Design, Synthesis, and Antifungal Activity. Sui G; Zhang W; Zhou K; Li Y; Zhang B; Xu D; Zou Y; Zhou W Chem Pharm Bull (Tokyo); 2017; 65(1):82-89. PubMed ID: 28049918 [TBL] [Abstract][Full Text] [Related]
19. Cross-Resistance Among Demethylation Inhibitor Fungicides With Brazilian Dutra PSS; Lichtemberg PSF; Martinez MB; Michailides TJ; May De Mio LL Plant Dis; 2020 Nov; 104(11):2843-2850. PubMed ID: 32955405 [TBL] [Abstract][Full Text] [Related]
20. Tracking of Diversity and Evolution in the Brown Rot Fungi De Miccolis Angelini RM; Landi L; Raguseo C; Pollastro S; Faretra F; Romanazzi G Front Microbiol; 2022; 13():854852. PubMed ID: 35356516 [No Abstract] [Full Text] [Related] [Next] [New Search]