BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34356806)

  • 1. Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content.
    Andreeva A; Budenkova E; Babich O; Sukhikh S; Dolganyuk V; Michaud P; Ivanova S
    Mar Drugs; 2021 Jul; 19(7):. PubMed ID: 34356806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Valuable Biological Substances from Microalgae Culture.
    Babich O; Dolganyuk V; Andreeva A; Katserov D; Matskova L; Ulrikh E; Ivanova S; Michaud P; Sukhikh S
    Foods; 2022 Jun; 11(11):. PubMed ID: 35681404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
    Pavón-Suriano SG; Ortega-Clemente LA; Curiel-Ramírez S; Jiménez-García MI; Pérez-Legaspi IA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21332-21340. PubMed ID: 28741207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Morphological Features and Determination of the Fatty Acid Composition of the Microalgae Lipid Complex.
    Dolganyuk V; Andreeva A; Budenkova E; Sukhikh S; Babich O; Ivanova S; Prosekov A; Ulrikh E
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33227978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content.
    de Freitas BCB; Brächer EH; de Morais EG; Atala DIP; de Morais MG; Costa JAV
    Environ Technol; 2019 Mar; 40(8):1062-1070. PubMed ID: 29251249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.
    Tan F; Wang Z; Zhouyang S; Li H; Xie Y; Wang Y; Zheng Y; Li Q
    Bioresour Technol; 2016 Dec; 221():385-393. PubMed ID: 27660989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on biomass production and carbohydrate accumulation of Chlorella vulgaris JSC-6 under autotrophic, mixotrophic, and photoheterotrophic cultivation.
    Cheng CL; Lo YC; Huang KL; Nagarajan D; Chen CY; Lee DJ; Chang JS
    Bioresour Technol; 2022 May; 351():127021. PubMed ID: 35306130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: Optimization of nutrient removal and biomass production.
    Markou G
    Bioresour Technol; 2015 Oct; 193():35-41. PubMed ID: 26117233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity.
    Margarites AC; Volpato N; Araújo E; Cardoso LG; Bertolin TE; Colla LM; Costa JAV
    Environ Technol; 2017 Sep; 38(17):2209-2216. PubMed ID: 27790947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins.
    Andreeva A; Budenkova E; Babich O; Sukhikh S; Ulrikh E; Ivanova S; Prosekov A; Dolganyuk V
    Molecules; 2021 May; 26(9):. PubMed ID: 34066679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.
    Almeida HN; Calixto GQ; Chagas BME; Melo DMA; Resende FM; Melo MAF; Braga RM
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14142-14150. PubMed ID: 28417328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a general kinetic microalgae model: Extending a semi-deterministic green microalgae model for the cyanobacterium Arthrospira platensis and red alga Porphyridium purpureum.
    Manhaeghe D; Arashiro LT; Van Hulle SWH; Rousseau DPL
    Bioresour Technol; 2021 Dec; 342():125993. PubMed ID: 34592617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals.
    Molino A; Iovine A; Casella P; Mehariya S; Chianese S; Cerbone A; Rimauro J; Musmarra D
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30388801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():157-65. PubMed ID: 23186680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity.
    Gharib FAEL; Osama K; Sattar AMAE; Ahmed EZ
    Sci Rep; 2024 Jan; 14(1):1398. PubMed ID: 38228623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation of blue green algae (Arthrospira platensis Gomont, 1892) in wastewater for biodiesel production.
    Salman JM; Majrashi N; Hassan FM; Al-Sabri A; Abdul-Adel Jabar E; Ameen F
    Chemosphere; 2023 Sep; 335():139107. PubMed ID: 37270039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae fortification of low-fat oil-in-water food emulsions: an evaluation of the physicochemical and rheological properties.
    Uribe-Wandurraga ZN; Martínez-Sánchez I; Savall C; García-Segovia P; Martínez-Monzó J
    J Food Sci Technol; 2021 Oct; 58(10):3701-3711. PubMed ID: 34471294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.