These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3435723)

  • 1. Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli.
    Wörgötter F; Eysel UT
    Biol Cybern; 1987; 57(6):349-55. PubMed ID: 3435723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axial responses in visual cortical cells: spatio-temporal mechanisms quantified by Fourier components of cortical tuning curves.
    Wörgötter F; Eysel UT
    Exp Brain Res; 1991; 83(3):656-64. PubMed ID: 2026205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlations between directional and orientational tuning of cells in cat striate cortex.
    Wörgötter F; Muche T; Eysel UT
    Exp Brain Res; 1991; 83(3):665-9. PubMed ID: 2026206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex.
    Gizzi MS; Katz E; Schumer RA; Movshon JA
    J Neurophysiol; 1990 Jun; 63(6):1529-43. PubMed ID: 2358891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to unconfound the directional and orientational information in visual neuron's response.
    Zhang J
    Biol Cybern; 1990; 63(2):135-42. PubMed ID: 2375939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of directional and orientational selectivities of visual neurons to moving stimuli.
    Li B; Wang Y; Diao Y
    Biol Cybern; 1994; 70(3):281-90. PubMed ID: 8136410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axis of preferred motion is a function of bar length in visual cortical receptive fields.
    Wörgötter F; Eysel UT
    Exp Brain Res; 1989; 76(2):307-14. PubMed ID: 2767187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Activation of the mechanism of orientation selectivity of neurons of the visual cortex of the cat by a moving noise field].
    Alekseenko SV; Stabinite DIu; Kirvialis DI
    Neirofiziologiia; 1985; 17(5):596-601. PubMed ID: 4069276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Heterogeneity of a neuron population with complex receptive fields in the visual cortex of costs].
    Alekseenko SV; Stabinite DIu; Kirvialis DI; Vanagas VA
    Neirofiziologiia; 1979; 11(2):109-16. PubMed ID: 440483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
    Humphrey AL; Saul AB
    J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of the relative preference for stimulus orientation and direction of movement in some units of the cat visual cortex (areas 17 and 18).
    Donaldson IM; Nash JR
    J Physiol; 1975 Feb; 245(2):305-24. PubMed ID: 1142160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural interactions of two moving patterns in the direction and orientation domain in the complex cells of cat's visual cortex.
    Kaji S; Kawabata N
    Vision Res; 1985; 25(6):749-53. PubMed ID: 4024473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cats raised in a one-directional world: effects on receptive fields in visual cortex and superior colliculus.
    Cynader M; Berman N; Hein A
    Exp Brain Res; 1975 Mar; 22(3):267-80. PubMed ID: 1052679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method of unconfounding orientation and direction tunings in neuronal response to moving bars and gratings.
    Zhang J
    J Opt Soc Am A Opt Image Sci Vis; 2005 Oct; 22(10):2246-56. PubMed ID: 16277293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of directional selectivity of neurons with complex receptive fields in the visual cortex of the cat].
    Stabinite DIu; Alekseenko SV; Kirvialis DI
    Neirofiziologiia; 1984; 16(4):505-12. PubMed ID: 6493398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17.
    Murthy A; Humphrey AL
    J Neurophysiol; 1999 Mar; 81(3):1212-24. PubMed ID: 10085348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional tuning of complex cells in area 17 of the feline visual cortex.
    Hammond P
    J Physiol; 1978 Dec; 285():479-91. PubMed ID: 745112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat.
    Blakemore C; Zumbroich TJ
    J Physiol; 1987 Aug; 389():569-603. PubMed ID: 3681738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex.
    Harutiunian-Kozak BA; Grigorian GG; Kozak JA; Sharanbekian AB; Sarkisyan GS; Khachvankian DK
    Arch Ital Biol; 2008 Jun; 146(2):119-30. PubMed ID: 18822799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direction and orientation selectivity of neurons in visual area MT of the macaque.
    Albright TD
    J Neurophysiol; 1984 Dec; 52(6):1106-30. PubMed ID: 6520628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.