These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34357538)
1. Small head movements increase and colour noise in data from five video-based P-CR eye trackers. Holmqvist K; Örbom SL; Zemblys R Behav Res Methods; 2022 Apr; 54(2):845-863. PubMed ID: 34357538 [TBL] [Abstract][Full Text] [Related]
2. The amplitude of small eye movements can be accurately estimated with video-based eye trackers. Nyström M; Niehorster DC; Andersson R; Hessels RS; Hooge ITC Behav Res Methods; 2023 Feb; 55(2):657-669. PubMed ID: 35419703 [TBL] [Abstract][Full Text] [Related]
3. Is apparent fixational drift in eye-tracking data due to filters or eyeball rotation? Niehorster DC; Zemblys R; Holmqvist K Behav Res Methods; 2021 Feb; 53(1):311-324. PubMed ID: 32705655 [TBL] [Abstract][Full Text] [Related]
4. Small eye movements cannot be reliably measured by video-based P-CR eye-trackers. Holmqvist K; Blignaut P Behav Res Methods; 2020 Oct; 52(5):2098-2121. PubMed ID: 32206998 [TBL] [Abstract][Full Text] [Related]
5. The pupil is faster than the corneal reflection (CR): Are video based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements? Hooge I; Holmqvist K; Nyström M Vision Res; 2016 Nov; 128():6-18. PubMed ID: 27656785 [TBL] [Abstract][Full Text] [Related]
6. The impact of slippage on the data quality of head-worn eye trackers. Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290 [TBL] [Abstract][Full Text] [Related]
7. A study of artificial eyes for the measurement of precision in eye-trackers. Wang D; Mulvey FB; Pelz JB; Holmqvist K Behav Res Methods; 2017 Jun; 49(3):947-959. PubMed ID: 27383751 [TBL] [Abstract][Full Text] [Related]
8. Do pupil-based binocular video eye trackers reliably measure vergence? Hooge ITC; Hessels RS; Nyström M Vision Res; 2019 Mar; 156():1-9. PubMed ID: 30641092 [TBL] [Abstract][Full Text] [Related]
9. From lab-based studies to eye-tracking in virtual and real worlds: conceptual and methodological problems and solutions. Symposium 4 at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019. Hooge ITC; Hessels RS; Niehorster DC; Diaz GJ; Duchowski AT; Pelz JB J Eye Mov Res; 2019 Nov; 12(7):. PubMed ID: 33828764 [TBL] [Abstract][Full Text] [Related]
10. Characterizing gaze position signals and synthesizing noise during fixations in eye-tracking data. Niehorster DC; Zemblys R; Beelders T; Holmqvist K Behav Res Methods; 2020 Dec; 52(6):2515-2534. PubMed ID: 32472501 [TBL] [Abstract][Full Text] [Related]
11. What to expect from your remote eye-tracker when participants are unrestrained. Niehorster DC; Cornelissen THW; Holmqvist K; Hooge ITC; Hessels RS Behav Res Methods; 2018 Feb; 50(1):213-227. PubMed ID: 28205131 [TBL] [Abstract][Full Text] [Related]
12. A new comprehensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the EyeLink 1000. Ehinger BV; Groß K; Ibs I; König P PeerJ; 2019; 7():e7086. PubMed ID: 31328028 [TBL] [Abstract][Full Text] [Related]
13. Pupil size influences the eye-tracker signal during saccades. Nyström M; Hooge I; Andersson R Vision Res; 2016 Apr; 121():95-103. PubMed ID: 26940030 [TBL] [Abstract][Full Text] [Related]
14. A novel method for measuring gaze orientation in space in unrestrained head conditions. Cesqui B; de Langenberg Rv; Lacquaniti F; d'Avella A J Vis; 2013 Jul; 13(8):. PubMed ID: 23902754 [TBL] [Abstract][Full Text] [Related]
15. Quantitative comparison of a mobile and a stationary video-based eye-tracker. Dowiasch S; Wolf P; Bremmer F Behav Res Methods; 2020 Apr; 52(2):667-680. PubMed ID: 31240632 [TBL] [Abstract][Full Text] [Related]
16. Webcam eye tracking close to laboratory standards: Comparing a new webcam-based system and the EyeLink 1000. Kaduk T; Goeke C; Finger H; König P Behav Res Methods; 2024 Aug; 56(5):5002-5022. PubMed ID: 37821751 [TBL] [Abstract][Full Text] [Related]
17. How robust are wearable eye trackers to slow and fast head and body movements? Hooge ITC; Niehorster DC; Hessels RS; Benjamins JS; Nyström M Behav Res Methods; 2023 Dec; 55(8):4128-4142. PubMed ID: 36326998 [TBL] [Abstract][Full Text] [Related]
18. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements. Larsson L; Schwaller A; Nyström M; Stridh M J Neurosci Methods; 2016 Dec; 274():13-26. PubMed ID: 27693470 [TBL] [Abstract][Full Text] [Related]
19. The pupil-size artefact (PSA) across time, viewing direction, and different eye trackers. Hooge ITC; Niehorster DC; Hessels RS; Cleveland D; Nyström M Behav Res Methods; 2021 Oct; 53(5):1986-2006. PubMed ID: 33709298 [TBL] [Abstract][Full Text] [Related]
20. Eyeblink Detection in the Field: A Proof of Concept Study of Two Mobile Optical Eye-Trackers. Schweizer T; Wyss T; Gilgen-Ammann R Mil Med; 2022 Mar; 187(3-4):e404-e409. PubMed ID: 33564826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]