These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34357868)
21. Chemical Spill Encircling Using a Quadrotor and Autonomous Surface Vehicles: A Distributed Cooperative Approach. Jacinto M; Cunha R; Pascoal A Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336349 [TBL] [Abstract][Full Text] [Related]
22. Virtual Guidance-Based Coordinated Tracking Control of Multi-Autonomous Underwater Vehicles Using Composite Neural Learning. Shou Y; Xu B; Zhang A; Mei T IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5565-5574. PubMed ID: 33657000 [TBL] [Abstract][Full Text] [Related]
23. Design, Validation and Comparison of Path Following Controllers for Autonomous Vehicles. Yang X; Xiong L; Leng B; Zeng D; Zhuo G Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114297 [TBL] [Abstract][Full Text] [Related]
24. Data-driven model-free resilient speed control of an autonomous surface vehicle in the presence of actuator anomalies. Gao S; Liu L; Wang H; Wang A ISA Trans; 2022 Aug; 127():251-258. PubMed ID: 35701238 [TBL] [Abstract][Full Text] [Related]
25. Multivehicle Flocking With Collision Avoidance via Distributed Model Predictive Control. Lyu Y; Hu J; Chen BM; Zhao C; Pan Q IEEE Trans Cybern; 2021 May; 51(5):2651-2662. PubMed ID: 31634856 [TBL] [Abstract][Full Text] [Related]
26. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics. Chengzhi Yuan ; Licht S; Haibo He IEEE Trans Cybern; 2018 Oct; 48(10):2920-2934. PubMed ID: 28961137 [TBL] [Abstract][Full Text] [Related]
27. Data-Driven Adaptive Disturbance Observers for Model-Free Trajectory Tracking Control of Maritime Autonomous Surface Ships. Peng Z; Wang D; Wang J IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5584-5594. PubMed ID: 34255635 [TBL] [Abstract][Full Text] [Related]
28. Adaptive Iterative Learning Control of Multiple Autonomous Vehicles With a Time-Varying Reference Under Actuator Faults. Huang J; Wang W; Su X IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5512-5525. PubMed ID: 33826518 [TBL] [Abstract][Full Text] [Related]
29. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design. Peng Z; Wang D; Wang W; Liu L ISA Trans; 2015 Nov; 59():160-71. PubMed ID: 26506019 [TBL] [Abstract][Full Text] [Related]
30. Health-aware control design based on remaining useful life estimation for autonomous racing vehicle. Karimi Pour F; Theilliol D; Puig V; Cembrano G ISA Trans; 2021 Jul; 113():196-209. PubMed ID: 32451079 [TBL] [Abstract][Full Text] [Related]
31. Spatial curvilinear path following control of underactuated AUV with multiple uncertainties. Miao J; Wang S; Zhao Z; Li Y; Tomovic MM ISA Trans; 2017 Mar; 67():107-130. PubMed ID: 28065455 [TBL] [Abstract][Full Text] [Related]
32. Adaptive Fast Non-Singular Terminal Sliding Mode Path Following Control for an Underactuated Unmanned Surface Vehicle with Uncertainties and Unknown Disturbances. Fan Y; Liu B; Wang G; Mu D Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833530 [TBL] [Abstract][Full Text] [Related]
33. USV Formation and Path-Following Control via Deep Reinforcement Learning With Random Braking. Zhao Y; Ma Y; Hu S IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5468-5478. PubMed ID: 33793404 [TBL] [Abstract][Full Text] [Related]
34. MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method. Li M; Cai Z; Zhao J; Wang Y; Wang Y; Lu K Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770614 [TBL] [Abstract][Full Text] [Related]
35. Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles. Havenstrøm ST; Rasheed A; San O Front Robot AI; 2020; 7():566037. PubMed ID: 33585570 [TBL] [Abstract][Full Text] [Related]
36. Consensus Maneuvering for a Class of Nonlinear Multivehicle Systems in Strict-Feedback Form. Zhang Y; Wang D; Peng Z IEEE Trans Cybern; 2019 May; 49(5):1759-1767. PubMed ID: 29994039 [TBL] [Abstract][Full Text] [Related]
37. Path Tracking Control of Autonomous Vehicles Subject to Deception Attacks via a Learning-Based Event-Triggered Mechanism. Gu Z; Yin T; Ding Z IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5644-5653. PubMed ID: 33587721 [TBL] [Abstract][Full Text] [Related]
38. Autonomous Rear Parking via Rapidly Exploring Random-Tree-Based Reinforcement Learning. Shahi S; Lee H Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081115 [TBL] [Abstract][Full Text] [Related]
39. Finite time PAILOS based path following control of underactuated marine surface vessel with input saturation. Zhu H; Yu H; Guo C ISA Trans; 2023 Apr; 135():66-77. PubMed ID: 36229240 [TBL] [Abstract][Full Text] [Related]
40. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters. Wang D; Zong Q; Tian B; Shao S; Zhang X; Zhao X ISA Trans; 2018 Feb; 73():208-226. PubMed ID: 29310865 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]