These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 34357962)

  • 21. Toxin-antitoxin systems and their medical applications: current status and future perspective.
    Srivastava A; Pati S; Kaushik H; Singh S; Garg LC
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):1803-1821. PubMed ID: 33582835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linking bacterial type I toxins with their actions.
    Brielle R; Pinel-Marie ML; Felden B
    Curr Opin Microbiol; 2016 Apr; 30():114-121. PubMed ID: 26874964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional characterization of HigBA toxin-antitoxin system in an Arctic bacterium, Bosea sp. PAMC 26642.
    Choi E; Huh A; Oh C; Oh JI; Kang HY; Hwang J
    J Microbiol; 2022 Feb; 60(2):192-206. PubMed ID: 35102526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel type I toxin-antitoxin system modulates persister cell formation in Staphylococcus aureus.
    Habib G; Zhu J; Sun B
    Int J Med Microbiol; 2020 Feb; 310(2):151400. PubMed ID: 32001143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection.
    Ma D; Mandell JB; Donegan NP; Cheung AL; Ma W; Rothenberger S; Shanks RMQ; Richardson AR; Urish KL
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772059
    [No Abstract]   [Full Text] [Related]  

  • 26. A novel Staphylococcus aureus cis-trans type I toxin-antitoxin module with dual effects on bacteria and host cells.
    Germain-Amiot N; Augagneur Y; Camberlein E; Nicolas I; Lecureur V; Rouillon A; Felden B
    Nucleic Acids Res; 2019 Feb; 47(4):1759-1773. PubMed ID: 30544243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global Analysis of the Specificities and Targets of Endoribonucleases from Escherichia coli Toxin-Antitoxin Systems.
    Culviner PH; Nocedal I; Fortune SM; Laub MT
    mBio; 2021 Oct; 12(5):e0201221. PubMed ID: 34544284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Type I toxin-antitoxin systems in Bacillus subtilis.
    Durand S; Jahn N; Condon C; Brantl S
    RNA Biol; 2012 Dec; 9(12):1491-7. PubMed ID: 23059907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Type II Toxin-Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803.
    Kopfmann S; Roesch SK; Hess WR
    Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27455323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homologous VapC Toxins Inhibit Translation and Cell Growth by Sequence-Specific Cleavage of tRNA
    Walling LR; Butler JS
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29109187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ribonucleases in bacterial toxin-antitoxin systems.
    Cook GM; Robson JR; Frampton RA; McKenzie J; Przybilski R; Fineran PC; Arcus VL
    Biochim Biophys Acta; 2013; 1829(6-7):523-31. PubMed ID: 23454553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally.
    Pinel-Marie ML; Brielle R; Felden B
    Cell Rep; 2014 Apr; 7(2):424-435. PubMed ID: 24703849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and characterization of VapBC toxin-antitoxin system in
    Jeon H; Choi E; Hwang J
    RNA; 2021 Nov; 27(11):1374-1389. PubMed ID: 34429367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of MazEF, sam, and phd-doc putative toxin-antitoxin systems in Staphylococcus epidermidis.
    Behrooz SK; Lida L; Ali S; Mehdi M; Rasoul M; Elnaz O; Farid BT; Gholamreza I
    Acta Microbiol Immunol Hung; 2018 Mar; 65(1):81-91. PubMed ID: 29471693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition.
    Korch SB; Malhotra V; Contreras H; Clark-Curtiss JE
    J Microbiol; 2015 Nov; 53(11):783-95. PubMed ID: 26502963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA antitoxin SprF1 binds ribosomes to attenuate translation and promote persister cell formation in Staphylococcus aureus.
    Pinel-Marie ML; Brielle R; Riffaud C; Germain-Amiot N; Polacek N; Felden B
    Nat Microbiol; 2021 Feb; 6(2):209-220. PubMed ID: 33398097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. System-Wide Analysis Unravels the Differential Regulation and In Vivo Essentiality of Virulence-Associated Proteins B and C Toxin-Antitoxin Systems of Mycobacterium tuberculosis.
    Agarwal S; Tiwari P; Deep A; Kidwai S; Gupta S; Thakur KG; Singh R
    J Infect Dis; 2018 May; 217(11):1809-1820. PubMed ID: 29529224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate specificity of bacterial endoribonuclease toxins.
    Han Y; Lee EJ
    BMB Rep; 2020 Dec; 53(12):611-621. PubMed ID: 33148377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR.
    Kawano M
    RNA Biol; 2012 Dec; 9(12):1520-7. PubMed ID: 23131729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward the identification of a type I toxin-antitoxin system in the plasmid DNA of dairy Lactobacillus rhamnosus.
    Folli C; Levante A; Percudani R; Amidani D; Bottazzi S; Ferrari A; Rivetti C; Neviani E; Lazzi C
    Sci Rep; 2017 Sep; 7(1):12051. PubMed ID: 28935987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.