These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34357975)

  • 61. Transcriptome profiling of venom gland from wasp species: de novo assembly, functional annotation, and discovery of molecular markers.
    Tan J; Wang W; Wu F; Li Y; Fan Q
    BMC Genomics; 2020 Jun; 21(1):427. PubMed ID: 32580761
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Venom proteins from polydnavirus-producing endoparasitoids: their role in host-parasite interactions.
    Asgari S
    Arch Insect Biochem Physiol; 2006 Mar; 61(3):146-56. PubMed ID: 16482579
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Departure mechanisms for host search on high-density patches by the Meteorus pulchricornis.
    Sheng S; Feng S; Meng L; Li B
    J Insect Sci; 2014; 14():. PubMed ID: 25502040
    [TBL] [Abstract][Full Text] [Related]  

  • 64. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis.
    Parkinson NM; Conyers CM; Keen JN; MacNicoll AD; Smith I; Weaver RJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Apr; 134(4):513-20. PubMed ID: 12727301
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite.
    Colinet D; Schmitz A; Cazes D; Gatti JL; Poirié M
    PLoS Pathog; 2010 Nov; 6(11):e1001206. PubMed ID: 21124871
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Venom components of Asobara japonica impair cellular immune responses of host Drosophila melanogaster.
    Furihata SX; Matsumoto H; Kimura MT; Hayakawa Y
    Arch Insect Biochem Physiol; 2013 Jun; 83(2):86-100. PubMed ID: 23606512
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Morphological and histological characterization of production structures, storage and distribution of venom in the parasitic wasp Bracon vulgaris.
    Alves TJ; Wanderley-Teixeira V; Teixeira ÁA; Alves LC; Araújo BC; Barros EM; Cunha FM
    Toxicon; 2015 Dec; 108():104-7. PubMed ID: 26472253
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of nutrient deficiency caused by host developmental arrest on the growth and development of a koinobiont parasitoid.
    Nakamatsu Y; Kuriya K; Harvey JA; Tanaka T
    J Insect Physiol; 2006; 52(11-12):1105-12. PubMed ID: 17095007
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera.
    Tsutsui Y; Maeto K; Hamaguchi K; Isaki Y; Takami Y; Naito T; Miura K
    Bull Entomol Res; 2014 Jun; 104(3):307-13. PubMed ID: 24521569
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rho 1 participates in parasitoid wasp eggs maturation and host cellular immunity inhibition.
    Wang R; Lin Z; Zhou L; Chen C; Yu X; Zhang J; Zou Z; Lu Z
    Insect Sci; 2023 Jun; 30(3):677-692. PubMed ID: 36271788
    [TBL] [Abstract][Full Text] [Related]  

  • 71. VENOM FROM THE ECTOPARASITIC WASP Habrobracon hebetor ACTIVATES CALCIUM-DEPENDENT DEGRADATION OF Galleria mellonella LARVAL HEMOCYTES.
    Kryukova NA; Chertkova EA; Semenova AD; Glazachev YI; Slepneva IA; Glupov VV
    Arch Insect Biochem Physiol; 2015 Nov; 90(3):117-30. PubMed ID: 26089096
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Novel Organelles with Elements of Bacterial and Eukaryotic Secretion Systems Weaponize Parasites of Drosophila.
    Heavner ME; Ramroop J; Gueguen G; Ramrattan G; Dolios G; Scarpati M; Kwiat J; Bhattacharya S; Wang R; Singh S; Govind S
    Curr Biol; 2017 Sep; 27(18):2869-2877.e6. PubMed ID: 28889977
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Venom apparatus of the endoparasitoid wasp Opius caricivorae Fischer (Hymenoptera: Braconidae): morphology and ultrastructure.
    Wan ZW; Wang HY; Chen XX
    Microsc Res Tech; 2006 Oct; 69(10):820-5. PubMed ID: 16830326
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Components of Asobara venoms and their effects on hosts.
    Moreau SJ; Vinchon S; Cherqui A; Prévost G
    Adv Parasitol; 2009; 70():217-32. PubMed ID: 19773072
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differential gene expression profiles in the venom gland/sac of Eumenes pomiformis (Hymenoptera: Eumenidae).
    Baek JH; Lee SH
    Toxicon; 2010 Jun; 55(6):1147-56. PubMed ID: 20096300
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Towards a comprehensive view of the primary structure of venom proteins from the parasitoid wasp Pimpla hypochondriaca.
    Parkinson NM; Conyers C; Keen J; MacNicoll A; Smith I; Audsley N; Weaver R
    Insect Biochem Mol Biol; 2004 Jun; 34(6):565-71. PubMed ID: 15147757
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Defensive behaviors of the Oriental armyworm
    Zhou J; Meng L; Li B
    PeerJ; 2017; 5():e3690. PubMed ID: 28852593
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A venom metalloproteinase from the parasitic wasp Eulophus pennicornis is toxic towards its host, tomato moth (Lacanobia oleracae).
    Price DR; Bell HA; Hinchliffe G; Fitches E; Weaver R; Gatehouse JA
    Insect Mol Biol; 2009 Apr; 18(2):195-202. PubMed ID: 19320760
    [TBL] [Abstract][Full Text] [Related]  

  • 79. De novo sequencing and transcriptome analysis of venom glands of endoparasitoid Aenasius arizonensis (Girault) (=Aenasius bambawalei Hayat) (Hymenoptera, Encyrtidae).
    Shaina H; UlAbdin Z; Webb BA; Arif MJ; Jamil A
    Toxicon; 2016 Oct; 121():134-144. PubMed ID: 27594666
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity.
    Modahl CM; Frietze S; Mackessy SP
    J Proteomics; 2018 Sep; 187():223-234. PubMed ID: 30092380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.