These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34358092)

  • 1. Delivery of Bioactive Gene Particles via Gelatin-Collagen-PEG-Based Electrospun Matrices.
    Tsekoura EK; Dick T; Pankongadisak P; Graf D; Boluk Y; Uludağ H
    Pharmaceuticals (Basel); 2021 Jul; 14(7):. PubMed ID: 34358092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun gelatin matrices with bioactive pDNA polyplexes.
    Pankongadisak P; Tsekoura E; Suwantong O; Uludağ H
    Int J Biol Macromol; 2020 Apr; 149():296-308. PubMed ID: 31991211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelatin nanofiber mats with Lipofectamine/plasmid DNA complexes for in vitro genome editing.
    Furuno K; Suzuki K; Sakai S
    Colloids Surf B Biointerfaces; 2022 Aug; 216():112561. PubMed ID: 35576881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds.
    Saraf A; Baggett LS; Raphael RM; Kasper FK; Mikos AG
    J Control Release; 2010 Apr; 143(1):95-103. PubMed ID: 20006660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local delivery of adeno-associated viral vectors with electrospun gelatin nanofiber mats.
    Furuno K; Elvitigala KCML; Suzuki K; Sakai S
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35345. PubMed ID: 37902433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-electrospun fibrous scaffold-adsorbed DNA for substrate-mediated gene delivery.
    Zhang J; Duan Y; Wei D; Wang L; Wang H; Gu Z; Kong D
    J Biomed Mater Res A; 2011 Jan; 96(1):212-20. PubMed ID: 21105170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delivery of rhBMP-2 Plasmid DNA Complexes via a PLLA/Collagen Electrospun Scaffold Induces Ectopic Bone Formation.
    Zhao X; Komatsu DE; Hadjiargyrou M
    J Biomed Nanotechnol; 2016 Jun; 12(6):1285-96. PubMed ID: 27319221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein expression following non-viral delivery of plasmid DNA coding for basic FGF and BMP-2 in a rat ectopic model.
    Rose LC; Kucharski C; Uludağ H
    Biomaterials; 2012 Apr; 33(11):3363-74. PubMed ID: 22289263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione-sensitive RGD-poly(ethylene glycol)-SS-polyethylenimine for intracranial glioblastoma targeted gene delivery.
    Lei Y; Wang J; Xie C; Wagner E; Lu W; Li Y; Wei X; Dong J; Liu M
    J Gene Med; 2013; 15(8-9):291-305. PubMed ID: 24038955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application.
    Somvipart S; Kanokpanont S; Rangkupan R; Ratanavaraporn J; Damrongsakkul S
    Int J Biol Macromol; 2013 Apr; 55():176-84. PubMed ID: 23334057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection.
    Zheng Y; Wu Y; Zhou Y; Wu J; Wang X; Qu Y; Wang Y; Zhang Y; Yu Q
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7905-7914. PubMed ID: 31976653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.
    Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z
    Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, surface properties and protein encapsulation/release studies of electrospun gelatin nanofibers.
    Liu S; Su Y; Chen Y
    J Biomater Sci Polym Ed; 2011; 22(7):945-55. PubMed ID: 20566066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of angiogenesis using VEGF releasing genipin-crosslinked electrospun gelatin mats.
    Del Gaudio C; Baiguera S; Boieri M; Mazzanti B; Ribatti D; Bianco A; Macchiarini P
    Biomaterials; 2013 Oct; 34(31):7754-65. PubMed ID: 23863451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering.
    Sriram M; Priya S; Katti DS
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38471166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering.
    Münchow EA; Pankajakshan D; Albuquerque MT; Kamocki K; Piva E; Gregory RL; Bottino MC
    Clin Oral Investig; 2016 Nov; 20(8):1921-1933. PubMed ID: 26612403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylenimine-PEG coated albumin nanoparticles for BMP-2 delivery.
    Zhang S; Kucharski C; Doschak MR; Sebald W; Uludağ H
    Biomaterials; 2010 Feb; 31(5):952-63. PubMed ID: 19878992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration.
    Nandakumar A; Fernandes H; de Boer J; Moroni L; Habibovic P; van Blitterswijk CA
    Macromol Biosci; 2010 Nov; 10(11):1365-73. PubMed ID: 20799255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.