These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34358300)

  • 1. Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli.
    Xu R; Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Nov; 37(21):3848-3855. PubMed ID: 34358300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iReMet-flux: constraint-based approach for integrating relative metabolite levels into a stoichiometric metabolic models.
    Sajitz-Hermstein M; Töpfer N; Kleessen S; Fernie AR; Nikoloski Z
    Bioinformatics; 2016 Sep; 32(17):i755-i762. PubMed ID: 27587698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis.
    Tian M; Reed JL
    Bioinformatics; 2018 Nov; 34(22):3882-3888. PubMed ID: 29878053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data integration across conditions improves turnover number estimates and metabolic predictions.
    Wendering P; Arend M; Razaghi-Moghadam Z; Nikoloski Z
    Nat Commun; 2023 Mar; 14(1):1485. PubMed ID: 36932067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level.
    Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Jul; 37(12):1717-1723. PubMed ID: 33245091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving flux predictions by integrating data from multiple strains.
    Long MR; Reed JL
    Bioinformatics; 2017 Mar; 33(6):893-900. PubMed ID: 27998937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis.
    Salvy P; Fengos G; Ataman M; Pathier T; Soh KC; Hatzimanikatis V
    Bioinformatics; 2019 Jan; 35(1):167-169. PubMed ID: 30561545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model.
    Yizhak K; Benyamini T; Liebermeister W; Ruppin E; Shlomi T
    Bioinformatics; 2010 Jun; 26(12):i255-60. PubMed ID: 20529914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana.
    Küken A; Gennermann K; Nikoloski Z
    Plant J; 2020 Sep; 103(6):2168-2177. PubMed ID: 32656814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux tope analysis: studying the coordination of reaction directions in metabolic networks.
    Gerstl MP; Müller S; Regensburger G; Zanghellini J
    Bioinformatics; 2019 Jan; 35(2):266-273. PubMed ID: 30649351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale fluxes predicted under the guidance of enzyme abundance using a novel hyper-cube shrink algorithm.
    Xie Z; Zhang T; Ouyang Q
    Bioinformatics; 2018 Feb; 34(3):502-510. PubMed ID: 28968667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in metabolic flux analysis toward genome-scale profiling of higher organisms.
    Basler G; Fernie AR; Nikoloski Z
    Biosci Rep; 2018 Dec; 38(6):. PubMed ID: 30341247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the extraction of elementary flux modes in genome-scale metabolic networks using the linear programming approach.
    Guil F; Hidalgo JF; García JM
    Bioinformatics; 2020 Aug; 36(14):4163-4170. PubMed ID: 32348455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic thermodynamic analysis of metabolic networks.
    Gollub MG; Kaltenbach HM; Stelling J
    Bioinformatics; 2021 Sep; 37(18):2938-2945. PubMed ID: 33755125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.