BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 34358425)

  • 1. Inorganic Ruddlesden-Popper Faults in Cesium Lead Bromide Perovskite Nanocrystals for Enhanced Optoelectronic Performance.
    Morrell MV; Pickett A; Bhattacharya P; Guha S; Xing Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38579-38585. PubMed ID: 34358425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Third Harmonic Generation in Lead Bromide Perovskites with Ruddlesden-Popper Planar Faults.
    Bhattacharya P; Morrell MV; Xing Y; Mathai CJ; Yu P; Guha S
    J Phys Chem Lett; 2021 Apr; 12(16):4092-4097. PubMed ID: 33885324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Structure and Electrical Activity of Grain Boundaries and Ruddlesden-Popper Faults in Cesium Lead Bromide Perovskite.
    Thind AS; Luo G; Hachtel JA; Morrell MV; Cho SB; Borisevich AY; Idrobo JC; Xing Y; Mishra R
    Adv Mater; 2019 Jan; 31(4):e1805047. PubMed ID: 30506822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blue Perovskite Nanocrystal Light-Emitting Diodes: Overcoming RuddlesdenPopper Fault-Induced Nonradiative Recombination via Post-Halide Exchange.
    Lee AY; Park JH; Kim H; Jeong HY; Lee JH; Song MH
    Small; 2022 Dec; 18(52):e2205011. PubMed ID: 36354161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Ligand Engineering for Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes.
    Park JH; Lee AY; Yu JC; Nam YS; Choi Y; Park J; Song MH
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8428-8435. PubMed ID: 30714373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Synthesis of All Inorganic Lead Halide Perovskite Nanocrystals with Various Appearances in Multiligand Reaction System.
    Chen C; Zhang L; Shi T; Liao G; Tang Z
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31835336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion migration mechanism in all-inorganic Ruddlesden-Popper lead halide perovskites by first-principles calculations.
    Zhao S; Xiao L
    Phys Chem Chem Phys; 2021 Dec; 24(1):403-410. PubMed ID: 34897315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties.
    Chang YH; Lin JC; Chen YC; Kuo TR; Wang DY
    Nanoscale Res Lett; 2018 Aug; 13(1):247. PubMed ID: 30136147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
    Yu Y; Zhang D; Yang P
    Nano Lett; 2017 Sep; 17(9):5489-5494. PubMed ID: 28796526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals.
    Penzo E; Loiudice A; Barnard ES; Borys NJ; Jurow MJ; Lorenzon M; Rajzbaum I; Wong EK; Liu Y; Schwartzberg AM; Cabrini S; Whitelam S; Buonsanti R; Weber-Bargioni A
    ACS Nano; 2020 Jun; 14(6):6999-7007. PubMed ID: 32459460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancements in Perovskite Nanocrystal Stability Enhancement: A Comprehensive Review.
    Liu X; Lee EC
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Exciton and Photon Confinement in Ruddlesden-Popper Perovskite Microplatelets for Highly Stable Low-Threshold Polarized Lasing.
    Li M; Wei Q; Muduli SK; Yantara N; Xu Q; Mathews N; Mhaisalkar SG; Xing G; Sum TC
    Adv Mater; 2018 Jun; 30(23):e1707235. PubMed ID: 29709082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Linewidths and Biexciton Quantum Yields of Single Cesium Lead Halide Nanocrystals in Solution.
    Utzat H; Shulenberger KE; Achorn OB; Nasilowski M; Sinclair TS; Bawendi MG
    Nano Lett; 2017 Nov; 17(11):6838-6846. PubMed ID: 29039964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruddlesden-Popper 2D perovskites of type (C
    Rahil M; Ansari RM; Prakash C; Islam SS; Dixit A; Ahmad S
    Sci Rep; 2022 Feb; 12(1):2176. PubMed ID: 35140250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Tailoring of Ruddlesden-Popper Perovskite at Fixed Large Spacer Cation Ratio.
    Guo J; Shi Z; Xia J; Wang K; Wei Q; Liang C; Zhao D; Zhang Z; Chen S; Liu T; Mei S; Hui W; Hong G; Chen Y; Xing G
    Small; 2021 Oct; 17(43):e2100560. PubMed ID: 33817963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Tailoring of Organic Cation of Layered Ruddlesden-Popper Perovskite Compounds.
    Pan H; Zhao X; Gong X; Shen Y; Wang M
    J Phys Chem Lett; 2019 Apr; 10(8):1813-1819. PubMed ID: 30929439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of multiple fluorophores in individual cesium lead bromide nanocrystals.
    Zhang Y; Guo T; Yang H; Bose R; Liu L; Yin J; Han Y; Bakr OM; Mohammed OF; Malko AV
    Nat Commun; 2019 Jul; 10(1):2930. PubMed ID: 31266944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Color Purity and Efficient Green Light-Emitting Diode Using Perovskite Nanocrystals with the Size Overly Exceeding Bohr Exciton Diameter.
    Yang JN; Chen T; Ge J; Wang JJ; Yin YC; Lan YF; Ru XC; Ma ZY; Zhang Q; Yao HB
    J Am Chem Soc; 2021 Dec; 143(47):19928-19937. PubMed ID: 34766754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-scale visualization of metallic lead leak related fine structure in CsPbBr
    Liu X; Wang J; Ma C; Huang X; Liu K; Xu Z; Wang W; Wang L; Bai X
    Nanoscale; 2021 Jan; 13(1):124-130. PubMed ID: 33326538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent dark exciton properties in cesium lead halide perovskite quantum dots.
    Rossi D; Qiao T; Liu X; Khurana M; Akimov AV; Cheon J; Son DH
    J Chem Phys; 2020 Nov; 153(18):184703. PubMed ID: 33187409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.