These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3435843)

  • 1. Formation of new corticorubral synapses as a mechanism for classical conditioning in the cat.
    Murakami F; Higashi S; Katsumaru H; Oda Y
    Brain Res; 1987 Dec; 437(2):379-82. PubMed ID: 3435843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological evidence for formation of new corticorubral synapses associated with classical conditioning in the cat.
    Ito M; Oda Y
    Exp Brain Res; 1994; 99(2):277-88. PubMed ID: 7925808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic plasticity in the red nucleus and learning.
    Murakami F; Oda Y; Tsukahara N
    Behav Brain Res; 1988; 28(1-2):175-9. PubMed ID: 3382510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of new cortico-rubral synapses as a possible mechanism for classical conditioning mediated by the red nucleus in cat.
    Oda Y; Ito M; Kishida H; Tsukahara N
    J Physiol (Paris); 1988-1989; 83(3):207-16. PubMed ID: 3272292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization of corticorubral synapses following cross-innervation of flexor and extensor nerves of adult cat: a quantitative electron microscopic study.
    Murakami F; Katsumaru H; Maeda J; Tsukahara N
    Brain Res; 1984 Jul; 306(1-2):299-306. PubMed ID: 6466979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classical conditioning mediated by the red nucleus in the cat.
    Tsukahara N; Oda Y; Notsu T
    J Neurosci; 1981 Jan; 1(1):72-9. PubMed ID: 7346559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of functional synapses in the adult cat red nucleus from the cerebrum following cross-innervating of forelimb flexor and extensor nerves. I. Appearance of new synaptic potentials.
    Tsukahara N; Fujito Y; Oda Y; Maeda J
    Exp Brain Res; 1982; 45(1-2):1-12. PubMed ID: 7056315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light and electron microscopic study of corticorubral synapses in adult cat: evidence for extensive synaptic remodeling during postnatal development.
    Saito Y; Katsumaru H; Wilson CJ; Murakami F
    J Comp Neurol; 2001 Nov; 440(3):236-44. PubMed ID: 11745620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic plasticity of the interpositorubral pathway functionally related to forelimb flexion movements.
    Pananceau M; Rispal-Padel L; Meftah EM
    J Neurophysiol; 1996 Jun; 75(6):2542-61. PubMed ID: 8793763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticorubral synaptic organization in Macaca fascicularis: a study utilizing degeneration, anterograde transport of WGA-HRP, and combined immuno-GABA-gold technique and computer-assisted reconstruction.
    Ralston DD
    J Comp Neurol; 1994 Dec; 350(4):657-73. PubMed ID: 7534317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distal forelimb cross-innervation effectively induces formation of corticorubral synapses.
    Fujito Y; Aoki M
    Neuroreport; 2002 Nov; 13(16):2121-4. PubMed ID: 12438938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and electrophysiological study of sprouting of corticorubral fibers after lesions of the contralateral cerebrum in kitten.
    Kosar E; Fujito Y; Murakami F; Tsukahara N
    Brain Res; 1985 Nov; 347(2):217-24. PubMed ID: 2998552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative study of synaptic reorganization in red nucleus neurons after lesion of the nucleus interpositus of the cat: an electron microscopic study involving intracellular injection of horseradish peroxidase.
    Murakami F; Katsumaru H; Saito K; Tsukahara N
    Brain Res; 1982 Jun; 242(1):41-53. PubMed ID: 7104732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation.
    Tsukahara N; Hultborn H; Murakami F; Fujito Y
    J Neurophysiol; 1975 Nov; 38(6):1359-72. PubMed ID: 1221077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synapses formed by ectopic corticofugal axons: an electron microscopic study of crossed corticorubral projections in kittens.
    Murakami F; Saito Y; Higashi S; Oikawa H
    Neurosci Lett; 1991 Sep; 131(1):49-52. PubMed ID: 1724305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological properties of the newly formed cortico-rubral synapses of red nucleus neurons due to collateral sprouting.
    Murakami F; Fujito Y; Tsukahara N
    Brain Res; 1976 Feb; 103(1):147-51. PubMed ID: 1252909
    [No Abstract]   [Full Text] [Related]  

  • 17. Collateral sprouting of somatosensory corticofugal axons into the cerebellar deafferented red nucleus.
    Tolbert DL; Marshall CA; Murphy MG
    Brain Res; 1982 Apr; 237(2):473-8. PubMed ID: 7083007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticorubral connections: ultrastructural evidence for homotypical synaptic reinnervation after developmental deafferentation.
    Fisher RS; Sutton RL; Hovda DA; Villablanca JR
    J Neurosci Res; 1988; 21(2-4):438-46. PubMed ID: 2464081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preservation of physical dimensions in a model of reactive synaptogenesis in the red nucleus.
    Bromberg MB; Arkin MS
    Brain Res; 1983 Oct; 276(1):154-8. PubMed ID: 6313128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Synaptic influences on corticorubral tract neurons in cats].
    Lenkov DN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1973; 23(5):1083-5. PubMed ID: 4359915
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.