BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34358526)

  • 1. Cheminformatic quantum mechanical enzyme model design: A catechol-O-methyltransferase case study.
    Summers TJ; Cheng Q; Palma MA; Pham DT; Kelso DK; Webster CE; DeYonker NJ
    Biophys J; 2021 Sep; 120(17):3577-3587. PubMed ID: 34358526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Glycine
    Cheng Q; DeYonker NJ
    J Phys Chem B; 2023 Nov; 127(43):9282-9294. PubMed ID: 37870315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of model building schemes and molecular dynamics sampling on QM-cluster models: the chorismate mutase case study.
    Agbaglo DA; Summers TJ; Cheng Q; DeYonker NJ
    Phys Chem Chem Phys; 2024 Apr; 26(16):12467-12482. PubMed ID: 38618904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase.
    Kulik HJ; Zhang J; Klinman JP; Martínez TJ
    J Phys Chem B; 2016 Nov; 120(44):11381-11394. PubMed ID: 27704827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Case Study of the Glycoside Hydrolase Enzyme Mechanism Using an Automated QM-Cluster Model Building Toolkit.
    Cheng Q; DeYonker NJ
    Front Chem; 2022; 10():854318. PubMed ID: 35402371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implicit versus explicit solvent in free energy calculations of enzyme catalysis: Methyl transfer catalyzed by catechol O-methyltransferase.
    Rod TH; Rydberg P; Ryde U
    J Chem Phys; 2006 May; 124(17):174503. PubMed ID: 16689579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum mechanical free energy barrier for an enzymatic reaction.
    Rod TH; Ryde U
    Phys Rev Lett; 2005 Apr; 94(13):138302. PubMed ID: 15904045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Dependence of QM/MM Calculations of Enzyme Catalysis on the Size of the QM Region.
    Jindal G; Warshel A
    J Phys Chem B; 2016 Sep; 120(37):9913-21. PubMed ID: 27552257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors That Determine the Variation of Equilibrium and Kinetic Properties of QM/MM Enzyme Simulations: QM Region, Conformation, and Boundary Condition.
    Demapan D; Kussmann J; Ochsenfeld C; Cui Q
    J Chem Theory Comput; 2022 Apr; 18(4):2530-2542. PubMed ID: 35226489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the nature of the transition state in catechol O-methyltransferase. A complementary study based on molecular dynamics and potential energy surface explorations.
    Roca M; Andrés J; Moliner V; Tuñón I; Bertrán J
    J Am Chem Soc; 2005 Aug; 127(30):10648-55. PubMed ID: 16045352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation free energy of catechol O-methyltransferase. Corrections to the potential of mean force.
    Roca M; Moliner V; Ruiz-Pernía JJ; Silla E; Tuñón I
    J Phys Chem A; 2006 Jan; 110(2):503-9. PubMed ID: 16405322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediation of donor-acceptor distance in an enzymatic methyl transfer reaction.
    Zhang J; Kulik HJ; Martinez TJ; Klinman JP
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):7954-9. PubMed ID: 26080432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do quantum mechanical energies calculated for small models of protein-active sites converge?
    Hu L; Eliasson J; Heimdal J; Ryde U
    J Phys Chem A; 2009 Oct; 113(43):11793-800. PubMed ID: 19785474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the active site-substrate interplay between x-ray crystal structure and molecular dynamics in chorismate mutase.
    Summers TJ; Hemmati R; Miller JE; Agbaglo DA; Cheng Q; DeYonker NJ
    J Chem Phys; 2023 Feb; 158(6):065101. PubMed ID: 36792523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-second protein dynamics of key residue at Position 38 in catechol-O-methyltransferase system: a time-resolved fluorescence study.
    Liu F; Zhang J
    J Biochem; 2020 Oct; 168(4):417-425. PubMed ID: 32492152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the methyl transfer mechanism catalyzed by chalcone O-methyltransferase: a density functional study.
    Cui FC; Pan XL; Liu W; Liu JY
    J Comput Chem; 2011 Nov; 32(14):3068-74. PubMed ID: 21815175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Quantum Mechanical Region Determination in QM/MM Simulation.
    Karelina M; Kulik HJ
    J Chem Theory Comput; 2017 Feb; 13(2):563-576. PubMed ID: 28068092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic methyl transfer: role of an active site residue in generating active site compaction that correlates with catalytic efficiency.
    Zhang J; Klinman JP
    J Am Chem Soc; 2011 Nov; 133(43):17134-7. PubMed ID: 21958159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis.
    Lee S; Kang J; Kim J
    Sci Rep; 2019 May; 9(1):8059. PubMed ID: 31147608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.