These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 34358598)
1. The HSP/co-chaperone network in environmental cold adaptation of Chilo suppressalis. Jiang F; Chang G; Li Z; Abouzaid M; Du X; Hull JJ; Ma W; Lin Y Int J Biol Macromol; 2021 Sep; 187():780-788. PubMed ID: 34358598 [TBL] [Abstract][Full Text] [Related]
2. Elevated chaperone proteins are a feature of winter freeze avoidance by larvae of the goldenrod gall moth, Epiblema scudderiana. Zhang G; Storey JM; Storey KB J Insect Physiol; 2018 Apr; 106(Pt 2):106-113. PubMed ID: 28433751 [TBL] [Abstract][Full Text] [Related]
3. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure. Zhang B; Peng Y; Zheng J; Liang L; Hoffmann AA; Ma CS Cell Stress Chaperones; 2016 Jul; 21(4):653-63. PubMed ID: 27125786 [TBL] [Abstract][Full Text] [Related]
4. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana. Cheng W; Li D; Wang Y; Liu Y; Zhu-Salzman K J Insect Physiol; 2016 Dec; 95():66-77. PubMed ID: 27639943 [TBL] [Abstract][Full Text] [Related]
5. Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Sonoda S; Fukumoto K; Izumi Y; Yoshida H; Tsumuki H Arch Insect Biochem Physiol; 2006 Sep; 63(1):36-47. PubMed ID: 16921518 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic analysis of pre-diapause larvae of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) in natural populations. Dong CL; Lu MX; Du YZ Comp Biochem Physiol Part D Genomics Proteomics; 2021 Dec; 40():100903. PubMed ID: 34455148 [TBL] [Abstract][Full Text] [Related]
7. Molecular characterization of eight ATP-dependent heat shock protein transcripts and their expression profiles in response to stresses in the spruce budworm, Choristoneura fumiferana (L.). Quan G; Duan J; Fick W; Candau JN J Therm Biol; 2020 Feb; 88():102493. PubMed ID: 32125981 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. Liu Y; Su H; Li R; Li X; Xu Y; Dai X; Zhou Y; Wang H BMC Genomics; 2017 Dec; 18(1):974. PubMed ID: 29258441 [TBL] [Abstract][Full Text] [Related]
9. Characterization and functional analysis of Cshsp19.0 encoding a small heat shock protein in Chilo suppressalis (Walker). Dong CL; Zhu F; Lu MX; Du YZ Int J Biol Macromol; 2021 Oct; 188():924-931. PubMed ID: 34352319 [TBL] [Abstract][Full Text] [Related]
10. Chilo suppressalis heat shock proteins are regulated by heat shock factor 1 during heat stress. Dong CL; Feng Z; Lu MX; Du YZ Insect Mol Biol; 2023 Feb; 32(1):69-78. PubMed ID: 36279182 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Multiple Heat-Shock Protein Transcripts from Cydia pomonella: Their Response to Extreme Temperature and Insecticide Exposure. Yang XQ; Zhang YL; Wang XQ; Dong H; Gao P; Jia LY J Agric Food Chem; 2016 Jun; 64(21):4288-98. PubMed ID: 27159229 [TBL] [Abstract][Full Text] [Related]
12. A chromosome-level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest, Chilo suppressalis. Ma W; Zhao X; Yin C; Jiang F; Du X; Chen T; Zhang Q; Qiu L; Xu H; Joe Hull J; Li G; Sung WK; Li F; Lin Y Mol Ecol Resour; 2020 Jan; 20(1):268-282. PubMed ID: 31482680 [TBL] [Abstract][Full Text] [Related]
13. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. Gu LL; Li MZ; Wang GR; Liu XD J Therm Biol; 2019 Apr; 81():103-109. PubMed ID: 30975406 [TBL] [Abstract][Full Text] [Related]
14. Methionine-rich storage protein gene in the rice stem borer, Chilo suppressalis, is expressed during diapause in response to cold acclimation. Sonoda S; Fukumoto K; Izumi Y; Ashfaq M; Yoshida H; Tsumuki H Insect Mol Biol; 2006 Dec; 15(6):853-9. PubMed ID: 17201777 [TBL] [Abstract][Full Text] [Related]
15. Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Farahani S; Bandani AR; Alizadeh H; Goldansaz SH; Whyard S PLoS One; 2020; 15(1):e0228104. PubMed ID: 31995629 [TBL] [Abstract][Full Text] [Related]
16. Effect of stress on heat shock protein levels, immune response and survival to fungal infection of Mamestra brassicae larvae. Richards EH; Dani MP; Lu Y; Butt T; Weaver RJ J Insect Physiol; 2017 Jan; 96():53-63. PubMed ID: 27789295 [TBL] [Abstract][Full Text] [Related]
17. Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, Pteromalus puparum in response to environmental stresses. Wang H; Li K; Zhu JY; Fang Q; Ye GY; Wang H; Li K; Zhu JY Arch Insect Biochem Physiol; 2012 Apr; 79(4-5):247-63. PubMed ID: 22517445 [TBL] [Abstract][Full Text] [Related]
18. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis. Pan DD; Lu MX; Li QY; Du YZ Cell Stress Chaperones; 2018 Jan; 23(1):55-64. PubMed ID: 28687981 [TBL] [Abstract][Full Text] [Related]
19. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Qiu L; Wang P; Wu T; Li B; Wang X; Lei C; Lin Y; Zhao J; Ma W Insect Mol Biol; 2018 Feb; 27(1):83-89. PubMed ID: 28940938 [TBL] [Abstract][Full Text] [Related]
20. The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. Qiu L; Sun Y; Jiang Z; Yang P; Liu H; Zhou H; Wang X; Zhang W; Lin Y; Ma W Insect Mol Biol; 2019 Aug; 28(4):520-527. PubMed ID: 30719783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]