BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34358598)

  • 21. Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidae).
    Atapour M; Moharramipour S
    Environ Entomol; 2009 Feb; 38(1):260-5. PubMed ID: 19791622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PROTEOMICS ANALYSIS OF OVEREXPRESSED PLASMA PROTEINS IN RESPONSE TO COLD ACCLIMATION IN Ostrinia furnacalis.
    Shang Q; Pan Y; Peng T; Yang S; Lu X; Wang Z; Xi J
    Arch Insect Biochem Physiol; 2015 Dec; 90(4):195-208. PubMed ID: 26440752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Up-regulation of heat shock proteins is essential for cold survival during insect diapause.
    Rinehart JP; Li A; Yocum GD; Robich RM; Hayward SA; Denlinger DL
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11130-7. PubMed ID: 17522254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.
    Teigen LE; Orczewska JI; McLaughlin J; O'Brien KM
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():139-47. PubMed ID: 26123780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).
    Štětina T; Koštál V; Korbelová J
    PLoS One; 2015; 10(6):e0128976. PubMed ID: 26034990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust.
    Cui F; Wang H; Zhang H; Kang L
    Cryobiology; 2014 Oct; 69(2):243-8. PubMed ID: 25086202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular characterization of three Hsp90 from Pieris and expression patterns in response to cold and thermal stress in summer and winter diapause of Pieris melete.
    Wu YK; Zou C; Fu DM; Zhang WN; Xiao HJ
    Insect Sci; 2018 Apr; 25(2):273-283. PubMed ID: 27791340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadherin CsCad plays differential functional roles in Cry1Ab and Cry1C intoxication in Chilo suppressalis.
    Du L; Chen G; Han L; Peng Y
    Sci Rep; 2019 Jun; 9(1):8507. PubMed ID: 31186483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker.
    Izumi Y; Sonoda S; Tsumuki H
    J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNAi in the striped stem borer, Chilo suppressalis, establishes a functional role for aminopeptidase N in Cry1Ab intoxication.
    Wang XY; Du LX; Liu CX; Gong L; Han LZ; Peng YF
    J Invertebr Pathol; 2017 Feb; 143():1-10. PubMed ID: 27823898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome analysis reveals global gene expression changes of Chilo suppressalis in response to sublethal dose of chlorantraniliprole.
    Meng X; Dong F; Qian K; Miao L; Yang X; Ge H; Wu Z; Wang J
    Chemosphere; 2019 Nov; 234():648-657. PubMed ID: 31234082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Transcriptome Analysis of
    Zhang H; Sun F; Zhang W; Gao X; Du L; Yun X; Li Y; Li L; Pang B; Tan Y
    Genes (Basel); 2023 Dec; 14(12):. PubMed ID: 38136998
    [No Abstract]   [Full Text] [Related]  

  • 33. Cloning and expression analysis of four heat shock protein genes in Ericerus pela (Homoptera: Coccidae).
    Liu WW; Yang P; Chen XM; Xu DL; Hu YH
    J Insect Sci; 2014; 14():. PubMed ID: 25826465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa.
    Huang LH; Wang CZ; Kang L
    J Insect Physiol; 2009 Mar; 55(3):279-85. PubMed ID: 19133268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational genome-wide identification of heat shock protein genes in the bovine genome.
    Ajayi OO; Peters SO; De Donato M; Sowande SO; Mujibi FDN; Morenikeji OB; Thomas BN; Adeleke MA; Imumorin IG
    F1000Res; 2018; 7():1504. PubMed ID: 30542619
    [No Abstract]   [Full Text] [Related]  

  • 36. Physiological effect of mild thermal stress and its induction of gene expression in the common cutworm, Spodoptera litura.
    Shen Y; Gong YJ; Gu J; Huang LH; Feng QL
    J Insect Physiol; 2014 Feb; 61():34-41. PubMed ID: 24406661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HSP Transcript and Protein Accumulation in Brassinosteroid Barley Mutants Acclimated to Low and High Temperatures.
    Sadura I; Libik-Konieczny M; Jurczyk B; Gruszka D; Janeczko A
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32164259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-Series Transcriptomic Analysis Reveals the Molecular Profiles of Diapause Termination Induced by Long Photoperiods and High Temperature in
    Bao H; Zhu H; Yu P; Luo G; Zhang R; Yue Q; Fang J
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The heat-shock protein/chaperone network and multiple stress resistance.
    Jacob P; Hirt H; Bendahmane A
    Plant Biotechnol J; 2017 Apr; 15(4):405-414. PubMed ID: 27860233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.