These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A three-dimensional (3D) printed biomimetic hierarchical scaffold with a covalent modular release system for osteogenesis. Chen G; Sun Y; Lu F; Jiang A; Subedi D; Kong P; Wang X; Yu T; Chi H; Song C; Liu K; Qi P; Yan J; Ji Y Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109842. PubMed ID: 31500042 [TBL] [Abstract][Full Text] [Related]
6. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry. Zhang B; Guo L; Chen H; Ventikos Y; Narayan RJ; Huang J J Mech Behav Biomed Mater; 2020 Apr; 104():103665. PubMed ID: 32174423 [TBL] [Abstract][Full Text] [Related]
7. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Pei X; Ma L; Zhang B; Sun J; Sun Y; Fan Y; Gou Z; Zhou C; Zhang X Biofabrication; 2017 Nov; 9(4):045008. PubMed ID: 28976356 [TBL] [Abstract][Full Text] [Related]
8. Effect of Morphological Characteristics and Biomineralization of 3D-Printed Gelatin/Hyaluronic Acid/Hydroxyapatite Composite Scaffolds on Bone Tissue Regeneration. Kim JW; Han YS; Lee HM; Kim JK; Kim YJ Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202759 [TBL] [Abstract][Full Text] [Related]
9. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442 [TBL] [Abstract][Full Text] [Related]
10. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials. Alonso-Sierra S; Velázquez-Castillo R; Millán-Malo B; Nava R; Bucio L; Manzano-Ramírez A; Cid-Luna H; Rivera-Muñoz EM Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():45-53. PubMed ID: 28866187 [TBL] [Abstract][Full Text] [Related]
11. DLP Fabrication of Multiple Hierarchical Biomimetic GelMA/SilMA/HAp Scaffolds for Enhancing Bone Regeneration. Song P; Gui X; Wu L; Su X; Zhou W; Luo Z; Zhang B; Feng P; Wei W; Fan C; Wu Y; Zeng W; Zhou C; Fan Y; Zhou Z Biomacromolecules; 2024 Mar; 25(3):1871-1886. PubMed ID: 38324764 [TBL] [Abstract][Full Text] [Related]
12. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. Gupta D; Singh AK; Dravid A; Bellare J ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment. Raymond Y; Bonany M; Lehmann C; Thorel E; Benítez R; Franch J; Espanol M; Solé-Martí X; Manzanares MC; Canal C; Ginebra MP Acta Biomater; 2021 Nov; 135():671-688. PubMed ID: 34496283 [TBL] [Abstract][Full Text] [Related]
14. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858 [TBL] [Abstract][Full Text] [Related]
15. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink. Gao J; Ding X; Yu X; Chen X; Zhang X; Cui S; Shi J; Chen J; Yu L; Chen S; Ding J Adv Healthc Mater; 2021 Feb; 10(3):e2001404. PubMed ID: 33225617 [TBL] [Abstract][Full Text] [Related]
16. Highly elastic 3D-printed gelatin/HA/placental-extract scaffolds for bone tissue engineering. Lee J; Kim D; Jang CH; Kim GH Theranostics; 2022; 12(9):4051-4066. PubMed ID: 35673575 [TBL] [Abstract][Full Text] [Related]
17. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic surface modification of Three-dimensional printed Polylactic acid scaffolds with custom mechanical properties for bone reconstruction. Shams A; Masaeli E; Ghomi H J Biomater Appl; 2023 Jan; 37(6):1042-1053. PubMed ID: 36565047 [TBL] [Abstract][Full Text] [Related]
19. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
20. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds. Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]