BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34358932)

  • 1. Genetic comprehension of organophosphate flame retardants, an emerging threat to prostate cancer.
    Zhang X; Lu Z; Ren X; Chen X; Zhou X; Zhou X; Zhang T; Liu Y; Wang S; Qin C
    Ecotoxicol Environ Saf; 2021 Oct; 223():112589. PubMed ID: 34358932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of triphenyl phosphate: An environmental explanation of colorectal cancer progression.
    Hong Z; Li Y; Deng X; Chen M; Pan J; Chen Z; Zhang X; Wang C; Qiu C
    Ecotoxicol Environ Saf; 2022 Aug; 241():113778. PubMed ID: 36068737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis based in silico study of organophosphate flame retardants - environmental explanation of bladder cancer progression.
    Yu K; Du Z; Xuan H; Chen Q
    Environ Toxicol Pharmacol; 2022 May; 92():103851. PubMed ID: 35346870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organophosphate flame retardant TDCPP: A risk factor for renal cancer?
    Zhou X; Zhou X; Yao L; Zhang X; Cong R; Luan J; Zhang T; Song N
    Chemosphere; 2022 Oct; 305():135485. PubMed ID: 35764118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells.
    Schang G; Robaire B; Hales BF
    Toxicol Sci; 2016 Apr; 150(2):499-509. PubMed ID: 26794138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive analysis-based study of triphenyl phosphate-environmental explanation of glioma progression.
    Zhang W; Song G
    Ecotoxicol Environ Saf; 2022 Dec; 248():114346. PubMed ID: 36455348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance.
    Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C
    Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress in environmental exposure of organophosphate flame retardants].
    Ding JJ; Yang FX
    Zhonghua Yu Fang Yi Xue Za Zhi; 2017 Jun; 51(6):570-576. PubMed ID: 28592106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bisphenol S promotes the progression of prostate cancer by regulating the expression of COL1A1 and COL1A2.
    Liu S; He B; Li H
    Toxicology; 2022 Apr; 472():153178. PubMed ID: 35405288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Toxicity Prediction of Biotransformation Molecules of Organophosphate Flame Retardants by Microbial Reactions in a Wastewater Treatment Plant.
    Choi Y; Kim SD
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity.
    Sun L; Xu W; Peng T; Chen H; Ren L; Tan H; Xiao D; Qian H; Fu Z
    Neurotoxicol Teratol; 2016; 55():16-22. PubMed ID: 27018022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review.
    Zhang Q; Yao Y; Wang Y; Zhang Q; Cheng Z; Li Y; Yang X; Wang L; Sun H
    Environ Pollut; 2021 Nov; 288():117742. PubMed ID: 34329057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative analysis of triphenyl phosphate: contextual interpretation of bladder cancer cohort.
    Zhang X; Huang W; Huang T; Zhang J; Xu A; Cheng Y; Qin C; Lu Q; Wang Z
    Front Oncol; 2023; 13():1260114. PubMed ID: 37869074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity.
    Behl M; Hsieh JH; Shafer TJ; Mundy WR; Rice JR; Boyd WA; Freedman JH; Hunter ES; Jarema KA; Padilla S; Tice RR
    Neurotoxicol Teratol; 2015; 52(Pt B):181-93. PubMed ID: 26386178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity.
    Yao C; Yang H; Li Y
    Sci Total Environ; 2021 Nov; 795():148837. PubMed ID: 34246143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental circulatory failure caused by metabolites of organophosphorus flame retardants in zebrafish, Danio rerio.
    Lee JS; Morita Y; Kawai YK; Covaci A; Kubota A
    Chemosphere; 2020 May; 246():125738. PubMed ID: 31918085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells.
    An J; Hu J; Shang Y; Zhong Y; Zhang X; Yu Z
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Sep; 51(11):980-8. PubMed ID: 27336727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental neurotoxicity of organophosphate flame retardants in early life stages of Japanese medaka (Oryzias latipes).
    Sun L; Tan H; Peng T; Wang S; Xu W; Qian H; Jin Y; Fu Z
    Environ Toxicol Chem; 2016 Dec; 35(12):2931-2940. PubMed ID: 27146889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bringing the emerging organophosphate flame retardants (eOPFRs) into view: A hidden ecological and human health threat.
    Shi H; Zhao Y
    Aquat Toxicol; 2024 Feb; 267():106833. PubMed ID: 38215608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure.
    He CT; Zheng J; Qiao L; Chen SJ; Yang JZ; Yuan JG; Yang ZY; Mai BX
    Chemosphere; 2015 Aug; 133():47-52. PubMed ID: 25898308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.