BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34358936)

  • 1. Terrestrial oil spill mapping using satellite earth observation and machine learning: A case study in South Sudan.
    Löw F; Stieglitz K; Diemar O
    J Environ Manage; 2021 Nov; 298():113424. PubMed ID: 34358936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria.
    Ozigis MS; Kaduk JD; Jarvis CH
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3621-3635. PubMed ID: 30535661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India.
    Dasari K; Anjaneyulu L; Nadimikeri J
    Mar Pollut Bull; 2022 Jan; 174():113182. PubMed ID: 34844147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil spills detection from SAR Earth observations based on a hybrid CNN transformer networks.
    Dehghani-Dehcheshmeh S; Akhoondzadeh M; Homayouni S
    Mar Pollut Bull; 2023 May; 190():114834. PubMed ID: 36934487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods.
    Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H
    Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine.
    Pech-May F; Aquino-Santos R; Rios-Toledo G; Posadas-Durán JPF
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach.
    Trujillo-Acatitla R; Tuxpan-Vargas J; Ovando-Vázquez C
    Mar Pollut Bull; 2022 Nov; 184():114132. PubMed ID: 36174253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of oil spill in the offshore zone of the Nile Delta using Sentinel data.
    Abou Samra RM; Ali RR
    Mar Pollut Bull; 2022 Jun; 179():113718. PubMed ID: 35561516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A damage assessment model of oil spill accident combining historical data and satellite remote sensing information: a case study in Penglai 19-3 oil spill accident of China.
    Wei L; Hu Z; Dong L; Zhao W
    Mar Pollut Bull; 2015 Feb; 91(1):258-71. PubMed ID: 25530016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.
    Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Wakashio oil spill off Mauritius using Sentinel-1 and 2 data: Capability of sensors, image transformation methods and mapping.
    Rajendran S; Vethamony P; Sadooni FN; Al-Kuwari HA; Al-Khayat JA; Seegobin VO; Govil H; Nasir S
    Environ Pollut; 2021 Apr; 274():116618. PubMed ID: 33582596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing.
    Svejkovsky J; Hess M; Muskat J; Nedwed TJ; McCall J; Garcia O
    Mar Pollut Bull; 2016 Sep; 110(1):162-176. PubMed ID: 27389454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near real time monitoring of platform sourced pollution using TerraSAR-X over the North Sea.
    Singha S; Velotto D; Lehner S
    Mar Pollut Bull; 2014 Sep; 86(1-2):379-390. PubMed ID: 25063509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sentinel-2 image transformation methods for mapping oil spill - A case study with Wakashio oil spill in the Indian Ocean, off Mauritius.
    Rajendran S; Vethamony P; Sadooni FN; Al-Kuwari HA; Al-Khayat JA; Govil H; Nasir S
    MethodsX; 2021; 8():101327. PubMed ID: 34430235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.
    Xu Q; Li X; Wei Y; Tang Z; Cheng Y; Pichel WG
    Mar Pollut Bull; 2013 Jun; 71(1-2):107-16. PubMed ID: 23618498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.
    De Padova D; Mossa M; Adamo M; De Carolis G; Pasquariello G
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5530-5543. PubMed ID: 28028707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil spills in the Barents Sea: The results of multiyear monitoring with synthetic aperture radar.
    Ivanov AY; Kucheiko AY; Ivonin DV; Filimonova NA; Terleeva NV; Evtushenko NV
    Mar Pollut Bull; 2022 Jun; 179():113677. PubMed ID: 35512519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.
    Singha S; Vespe M; Trieschmann O
    Mar Pollut Bull; 2013 Aug; 73(1):199-209. PubMed ID: 23790462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of marine oil spills from radar satellite images for the coastal ecological risk assessment.
    Ma X; Xu J; Pan J; Yang J; Wu P; Meng X
    J Environ Manage; 2023 Jan; 325(Pt B):116637. PubMed ID: 36419311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine oil spill detection using Synthetic Aperture Radar over Indian Ocean.
    Naz S; Iqbal MF; Mahmood I; Allam M
    Mar Pollut Bull; 2021 Jan; 162():111921. PubMed ID: 33341595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.