BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34358991)

  • 21. Ultrafast sonochemical synthesis of protein-inorganic nanoflowers.
    Batule BS; Park KS; Kim MI; Park HG
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):137-42. PubMed ID: 26346235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired synthesis of organic-inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay.
    Tang Q; Zhang L; Tan X; Jiao L; Wei Q; Li H
    Biosens Bioelectron; 2019 May; 133():94-99. PubMed ID: 30913510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity.
    Wu ZF; Wang Z; Zhang Y; Ma YL; He CY; Li H; Chen L; Huo QS; Wang L; Li ZQ
    Sci Rep; 2016 Mar; 6():22412. PubMed ID: 26926099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis.
    Gao J; Liu H; Tong C
    Inorg Chem; 2023 Aug; 62(34):13812-13823. PubMed ID: 37584534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic synthesis of protein-DNA-CaHPO
    Ye R; Chen H; Li H
    Anal Chim Acta; 2022 Sep; 1225():340227. PubMed ID: 36038237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability.
    Nadar SS; Gawas SD; Rathod VK
    Int J Biol Macromol; 2016 Nov; 92():660-669. PubMed ID: 27343706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications.
    Zhang S; Bilal M; Zdarta J; Cui J; Kumar A; Franco M; Ferreira LFR; Iqbal HMN
    Food Res Int; 2021 Feb; 140():109979. PubMed ID: 33648214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired synthesis of protein-posnjakite organic-inorganic nanobiohybrid for biosensing applications.
    Ye R; Xu H; Gu J; Chen H
    Anal Chim Acta; 2021 Jan; 1143():31-36. PubMed ID: 33384127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing.
    Cheon HJ; Adhikari MD; Chung M; Tran TD; Kim J; Kim MI
    Adv Healthc Mater; 2019 May; 8(9):e1801507. PubMed ID: 30848070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinspired DNA-Inorganic Hybrid Nanoflowers Combined with a Personal Glucose Meter for Onsite Detection of miRNA.
    Wu T; Yang Y; Cao Y; Song Y; Xu LP; Zhang X; Wang S
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42050-42057. PubMed ID: 30457317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol.
    Lin Z; Xiao Y; Yin Y; Hu W; Liu W; Yang H
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10775-82. PubMed ID: 24937087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rolling Circle Transcription-Amplified Hierarchically Structured Organic-Inorganic Hybrid RNA Flowers for Enzyme Immobilization.
    Wang Y; Kim E; Lin Y; Kim N; Kit-Anan W; Gopal S; Agarwal S; Howes PD; Stevens MM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):22932-22940. PubMed ID: 31252470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides.
    Chen J; Guo Z; Xin Y; Shi Y; Li Y; Gu Z; Zhong J; Guo X; Zhang L
    Enzyme Microb Technol; 2021 May; 146():109766. PubMed ID: 33812563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trypsin/Zn
    Wang Z; Liu P; Fang Z; Jiang H
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications.
    Bilal M; Iqbal HMN
    Int J Biol Macromol; 2021 Jan; 166():818-838. PubMed ID: 33144258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and demonstration of functionalized inorganic-organic hybrid copper phosphate nanoflowers for mimicking the oxidative reactions of metalloenzymes by working as a nanozyme.
    Nag R; Rao CP
    J Mater Chem B; 2021 Apr; 9(16):3523-3532. PubMed ID: 33909739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.
    Li K; Wang J; He Y; Abdulrazaq MA; Yan Y
    J Biotechnol; 2018 Sep; 281():87-98. PubMed ID: 29928917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of magnetic nanoflower biocatalytic system with enhanced enzymatic performance by biomineralization and its application for bisphenol A removal.
    Han J; Luo P; Wang L; Li C; Mao Y; Wang Y
    J Hazard Mater; 2019 Dec; 380():120901. PubMed ID: 31330392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-organic supports for enzyme immobilization: Scopes and perspectives.
    Zahirinejad S; Hemmati R; Homaei A; Dinari A; Hosseinkhani S; Mohammadi S; Vianello F
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111774. PubMed ID: 33932893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Programmable DNA Nanoflowers for Biosensing, Bioimaging, and Therapeutics.
    Lv J; Dong Y; Gu Z; Yang D
    Chemistry; 2020 Nov; 26(64):14512-14524. PubMed ID: 32969061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.