These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34359394)

  • 1. The Feasibility of Using Pulsed-Vacuum in Stimulating Calcium-Alginate Hydrogel Balls.
    Jinnoros J; Innawong B; Udomkun P; Parakulsuksatid P; Silva JL
    Foods; 2021 Jul; 10(7):. PubMed ID: 34359394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods.
    Puguan JM; Yu X; Kim H
    J Colloid Interface Sci; 2014 Oct; 432():109-16. PubMed ID: 25086384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the Physical Properties of Calcium Alginate Gel Beads Under a Wide Range of Gelation Temperature Conditions.
    Jeong C; Kim S; Lee C; Cho S; Kim SB
    Foods; 2020 Feb; 9(2):. PubMed ID: 32059391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preparation and preliminary research on the characteristics of modified nano-bioglass hydrogel].
    Wei LC; Zhang YJ; Huang S; Yao B; Li X; Chen XY; Li Y; Fu XB; Wu X
    Zhonghua Shao Shang Za Zhi; 2020 Oct; 36(10):930-938. PubMed ID: 33105945
    [No Abstract]   [Full Text] [Related]  

  • 6. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 7. Dimensionally Stable and Mechanically Adaptive Polyelectrolyte Hydrogel.
    Qian C; Asoh TA; Uyama H
    Macromol Rapid Commun; 2020 Nov; 41(22):e2000406. PubMed ID: 32959392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet-Based Microfluidic Preparation of Shape-Variable Alginate Hydrogel Magnetic Micromotors.
    Zhang C; Wang Y; Chen Y; Ma X; Chen W
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ pore-forming alginate hydrogel beads loaded with in situ formed nano-silver and their catalytic activity.
    Wang Q; Liu S; Wang H; Yang Y
    Phys Chem Chem Phys; 2016 May; 18(18):12610-5. PubMed ID: 27093592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable and injectable hydrogels as an immunosuppressive drug delivery system.
    Kim HS; Yang J; Kim K; Shin US
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():472-481. PubMed ID: 30813049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation.
    Rajmohan D; Bellmer D
    Int J Food Sci; 2019; 2019():7101279. PubMed ID: 31058183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy.
    Jahanban-Esfahlan R; Derakhshankhah H; Haghshenas B; Massoumi B; Abbasian M; Jaymand M
    Int J Biol Macromol; 2020 Aug; 156():438-445. PubMed ID: 32298719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Cull Cow Meat Quality Using Vacuum Impregnation.
    Leal-Ramos MY; Alarcón-Rojo AD; Gutiérrez-Méndez N; Mújica-Paz H; Rodríguez-Almeida F; Quintero-Ramos A
    Foods; 2018 May; 7(5):. PubMed ID: 29735916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatically gellable gelatin improves nano-hydroxyapatite-alginate microcapsule characteristics for modular bone tissue formation.
    Firouzi N; Baradar Khoshfetrat A; Kazemi D
    J Biomed Mater Res A; 2020 Feb; 108(2):340-350. PubMed ID: 31618526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources.
    Liu XD; Yu WY; Zhang Y; Xue WM; Yu WT; Xiong Y; Ma XJ; Chen Y; Yuan Q
    J Microencapsul; 2002; 19(6):775-82. PubMed ID: 12569026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Electroformation of Biopolymer Gels in Prescribed Shapes and Patterns: A Simpler Alternative to 3-D Printing.
    Gargava A; Ahn S; Bentley WE; Raghavan SR
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37103-37111. PubMed ID: 31566952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of mammalian cell-enclosing calcium-alginate hydrogel fibers in a co-flowing stream.
    Takei T; Sakai S; Ijima H; Kawakami K
    Biotechnol J; 2006 Sep; 1(9):1014-7. PubMed ID: 16941441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering].
    Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of alginate hydrogels manufactured using external gelation.
    Kaklamani G; Cheneler D; Grover LM; Adams MJ; Bowen J
    J Mech Behav Biomed Mater; 2014 Aug; 36():135-42. PubMed ID: 24841676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation.
    Quong D; Neufeld RJ; Skjåk-Braek G; Poncelet D
    Biotechnol Bioeng; 1998 Feb; 57(4):438-46. PubMed ID: 10099220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.