These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 34359453)
1. Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film. Sánchez-Gutiérrez M; Bascón-Villegas I; Espinosa E; Carrasco E; Pérez-Rodríguez F; Rodríguez A Foods; 2021 Jul; 10(7):. PubMed ID: 34359453 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Arun R; Shruthy R; Preetha R; Sreejit V Chemosphere; 2022 Mar; 291(Pt 1):132786. PubMed ID: 34762882 [TBL] [Abstract][Full Text] [Related]
3. Influence of Nanocellulose Additive on the Film Properties of Native Rice Starch-based Edible Films for Food Packaging. Jeevahan J; Chandrasekaran M Recent Pat Nanotechnol; 2019; 13(3):222-233. PubMed ID: 31553298 [TBL] [Abstract][Full Text] [Related]
4. Water-resistant and barrier properties of poly(vinyl alcohol)/nanocellulose films enhanced by metal ion crosslinking. Ren Y; Fan X; Cao L; Chen Y Int J Biol Macromol; 2024 Oct; 277(Pt 3):134245. PubMed ID: 39079568 [TBL] [Abstract][Full Text] [Related]
6. PVA/CNC/TiO Nguyen SV; Lee BK Carbohydr Polym; 2022 Dec; 298():120064. PubMed ID: 36241263 [TBL] [Abstract][Full Text] [Related]
7. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Reddy JP; Rhim JW Carbohydr Polym; 2014 Sep; 110():480-8. PubMed ID: 24906782 [TBL] [Abstract][Full Text] [Related]
8. Development of high-barrier composite films for sustainable reduction of non-biodegradable materials in food packaging application. Zeng J; Ma Y; Li P; Zhang X; Gao W; Wang B; Xu J; Chen K Carbohydr Polym; 2024 Apr; 330():121824. PubMed ID: 38368104 [TBL] [Abstract][Full Text] [Related]
9. Polyvinyl alcohol/cellulose nanocrystals/alkyl ketene dimer nanocomposite as a novel biodegradable food packing material. Van Nguyen S; Lee BK Int J Biol Macromol; 2022 May; 207():31-39. PubMed ID: 35247417 [TBL] [Abstract][Full Text] [Related]
10. Sandwich-Structured, Hydrophobic, Nanocellulose-Reinforced Polyvinyl Alcohol as an Alternative Straw Material. Chou CT; Shi SC; Chen CK Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960998 [TBL] [Abstract][Full Text] [Related]
11. Functional Nanocellulose, Alginate and Chitosan Nanocomposites Designed as Active Film Packaging Materials. Lavrič G; Oberlintner A; Filipova I; Novak U; Likozar B; Vrabič-Brodnjak U Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372125 [TBL] [Abstract][Full Text] [Related]
12. Preparation, characterization, and performance evaluation of composite films of polyvinyl alcohol/ cellulose nanofiber extracted from Imperata cylindrica. Majumdar R; Mishra U; Mahata N; Shah MP; Mondal A; Bhunia B Chemosphere; 2023 Oct; 337():139370. PubMed ID: 37402426 [TBL] [Abstract][Full Text] [Related]
13. Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers. Li Y; Chen Y; Wu Q; Huang J; Zhao Y; Li Q; Wang S Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566875 [TBL] [Abstract][Full Text] [Related]
14. Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging. Bascón-Villegas I; Sánchez-Gutiérrez M; Pérez-Rodríguez F; Espinosa E; Rodríguez A Foods; 2021 Dec; 10(12):. PubMed ID: 34945594 [TBL] [Abstract][Full Text] [Related]
15. Ultraviolet blocking ability, antioxidant and antibacterial properties of newly prepared polyvinyl alcohol-nanocellulose‑silver nanoparticles-ChunJian peel extract composite film. Yang D; Fan B; Sun G; He YC; Ma C Int J Biol Macromol; 2023 Dec; 252():126427. PubMed ID: 37598821 [TBL] [Abstract][Full Text] [Related]
16. Characterization of nanocellulose and activated carbon nanocomposite films' biosensing properties for smart packaging. Sobhan A; Muthukumarappan K; Cen Z; Wei L Carbohydr Polym; 2019 Dec; 225():115189. PubMed ID: 31521300 [TBL] [Abstract][Full Text] [Related]
17. Production of nanocellulose from corn husk for the development of antimicrobial biodegradable packaging film. Chawla P; Sridhar K; Kumar A; Sarangi PK; Bains A; Sharma M Int J Biol Macromol; 2023 Jul; 242(Pt 2):124805. PubMed ID: 37182633 [TBL] [Abstract][Full Text] [Related]
18. Construction of multiple crosslinked networks for the preparation of high-performance lignin-containing cellulose nanofiber reinforced polyvinyl alcohol films. Wang H; Liu X; Wu M; Huang Y Int J Biol Macromol; 2024 Feb; 259(Pt 1):129061. PubMed ID: 38161028 [TBL] [Abstract][Full Text] [Related]
19. Improving the performance of edible food packaging films by using nanocellulose as an additive. Zhang W; Zhang Y; Cao J; Jiang W Int J Biol Macromol; 2021 Jan; 166():288-296. PubMed ID: 33129905 [TBL] [Abstract][Full Text] [Related]
20. Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices. Ahmadi A; Ahmadi P; Sani MA; Ehsani A; Ghanbarzadeh B Int J Biol Macromol; 2021 Apr; 175():87-97. PubMed ID: 33485892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]