These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34359846)

  • 1. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes.
    Abaandou L; Quan D; Shiloach J
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells.
    Shin SW; Kim D; Lee JS
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasible development of stable HEK293 clones by CRISPR/Cas9-mediated site-specific integration for biopharmaceuticals production.
    Yang H; Wang J; Zhao M; Zhu J; Zhang M; Wang Z; Gao Y; Zhu W; Lu H
    Biotechnol Lett; 2019 Sep; 41(8-9):941-950. PubMed ID: 31236787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-interceded CHO cell line development approaches.
    Amiri S; Adibzadeh S; Ghanbari S; Rahmani B; Kheirandish MH; Farokhi-Fard A; Dastjerdeh MS; Davami F
    Biotechnol Bioeng; 2023 Apr; 120(4):865-902. PubMed ID: 36597180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHO cells in biotechnology for production of recombinant proteins: current state and further potential.
    Kim JY; Kim YG; Lee GM
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):917-30. PubMed ID: 22159888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of HEK293 cells as emerging versatile cell factories.
    Pulix M; Lukashchuk V; Smith DC; Dickson AJ
    Curr Opin Biotechnol; 2021 Oct; 71():18-24. PubMed ID: 34058525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofountain Probe Electroporation for Monoclonal Cell Line Generation.
    Espinosa HD; Mukherjee P; Patino C
    Methods Mol Biol; 2020; 2050():59-68. PubMed ID: 31468479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells.
    Alves CS; Dobrowsky TM
    Methods Mol Biol; 2017; 1603():1-23. PubMed ID: 28493120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions.
    Hansen HG; Pristovšek N; Kildegaard HF; Lee GM
    Biotechnol Adv; 2017; 35(1):64-76. PubMed ID: 27931938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
    Termglinchan V; Seeger T; Chen C; Wu JC; Karakikes I
    Methods Mol Biol; 2017; 1521():55-68. PubMed ID: 27910041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lentiviral vector platform for improved erythropoietin expression concomitant with shRNA mediated host cell elastase down regulation.
    Dhamne H; Chande AG; Mukhopadhyaya R
    Plasmid; 2014 Jan; 71():1-7. PubMed ID: 24325878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes.
    Labenski V; Suerth JD; Barczak E; Heckl D; Levy C; Bernadin O; Charpentier E; Williams DA; Fehse B; Verhoeyen E; Schambach A
    Biomaterials; 2016 Aug; 97():97-109. PubMed ID: 27162078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line.
    Yusufi FNK; Lakshmanan M; Ho YS; Loo BLW; Ariyaratne P; Yang Y; Ng SK; Tan TRM; Yeo HC; Lim HL; Ng SW; Hiu AP; Chow CP; Wan C; Chen S; Teo G; Song G; Chin JX; Ruan X; Sung KWK; Hu WS; Yap MGS; Bardor M; Nagarajan N; Lee DY
    Cell Syst; 2017 May; 4(5):530-542.e6. PubMed ID: 28544881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Recombinant Adeno-associated Virus Vectors Using Suspension HEK293 Cells and Continuous Harvest of Vector From the Culture Media for GMP FIX and FLT1 Clinical Vector.
    Grieger JC; Soltys SM; Samulski RJ
    Mol Ther; 2016 Feb; 24(2):287-297. PubMed ID: 26437810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR: MODIFYING THE LIFE SCIENCE LANDSCAPE.
    Blow N
    Biotechniques; 2016; 61(5):225-231. PubMed ID: 27839507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A human expression system based on HEK293 for the stable production of recombinant erythropoietin.
    Chin CL; Goh JB; Srinivasan H; Liu KI; Gowher A; Shanmugam R; Lim HL; Choo M; Tang WQ; Tan AH; Nguyen-Khuong T; Tan MH; Ng SK
    Sci Rep; 2019 Nov; 9(1):16768. PubMed ID: 31727983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of apoptosis-resistant HEK293 cells with CRISPR/Cas mediated quadruple gene knockout for improved protein and virus production.
    Zhang W; Xiao D; Shan L; Zhao J; Mao Q; Xia H
    Biotechnol Bioeng; 2017 Nov; 114(11):2539-2549. PubMed ID: 28710851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.