BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 34359909)

  • 1. Characterization of
    Slugina MA; Efremov GI; Shchennikova AV; Kochieva EZ
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introgression of a dominant phototropin1 mutant enhances carotenoids and boosts flavour-related volatiles in genome-edited tomato RIN mutants.
    Nizampatnam NR; Sharma K; Gupta P; Pamei I; Sarma S; Sreelakshmi Y; Sharma R
    New Phytol; 2024 Mar; 241(5):2227-2242. PubMed ID: 38151719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus.
    Vrebalov J; Ruezinsky D; Padmanabhan V; White R; Medrano D; Drake R; Schuch W; Giovannoni J
    Science; 2002 Apr; 296(5566):343-6. PubMed ID: 11951045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening.
    Ma N; Feng H; Meng X; Li D; Yang D; Wu C; Meng Q
    BMC Plant Biol; 2014 Dec; 14():351. PubMed ID: 25491370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions.
    Osorio S; Alba R; Damasceno CM; Lopez-Casado G; Lohse M; Zanor MI; Tohge T; Usadel B; Rose JK; Fei Z; Giovannoni JJ; Fernie AR
    Plant Physiol; 2011 Sep; 157(1):405-25. PubMed ID: 21795583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening.
    Yang T; Peng H; Whitaker BD; Conway WS
    BMC Plant Biol; 2012 Feb; 12():19. PubMed ID: 22330838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit.
    Giménez E; Dominguez E; Pineda B; Heredia A; Moreno V; Lozano R; Angosto T
    Plant Physiol; 2015 Jul; 168(3):1036-48. PubMed ID: 26019301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in fruit development and ripening: an overview.
    White PJ
    J Exp Bot; 2002 Oct; 53(377):1995-2000. PubMed ID: 12324524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit.
    Rodríguez-Concepción M; Querol J; Lois LM; Imperial S; Boronat A
    Planta; 2003 Jul; 217(3):476-82. PubMed ID: 12721677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato.
    Moore S; Vrebalov J; Payton P; Giovannoni J
    J Exp Bot; 2002 Oct; 53(377):2023-30. PubMed ID: 12324526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of expansin proteins and activity during tomato fruit ontogeny.
    Rose JK; Cosgrove DJ; Albersheim P; Darvill AG; Bennett AB
    Plant Physiol; 2000 Aug; 123(4):1583-92. PubMed ID: 10938374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green ripe fruit in tomato: unraveling the genetic tapestry from cultivated to wild varieties.
    Kumar P; Irfan M
    J Exp Bot; 2024 Jun; 75(11):3203-3205. PubMed ID: 38845353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Identification, Classification, Characterization, and Expression Analysis of the Wall-Associated Kinase Family during Fruit Development and under Wound Stress in Tomato (
    Sun Z; Song Y; Chen D; Zang Y; Zhang Q; Yi Y; Qu G
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33053790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tomato histone deacetylase SlHDA1 contributes to the repression of fruit ripening and carotenoid accumulation.
    Guo JE; Hu Z; Zhu M; Li F; Zhu Z; Lu Y; Chen G
    Sci Rep; 2017 Aug; 7(1):7930. PubMed ID: 28801625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development.
    Alba R; Payton P; Fei Z; McQuinn R; Debbie P; Martin GB; Tanksley SD; Giovannoni JJ
    Plant Cell; 2005 Nov; 17(11):2954-65. PubMed ID: 16243903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WUSCHEL-related homeobox transcription factor SlWOX13 regulates tomato fruit ripening.
    Jiang G; Li Z; Ding X; Zhou Y; Lai H; Jiang Y; Duan X
    Plant Physiol; 2024 Mar; 194(4):2322-2337. PubMed ID: 37995308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.
    Liu DD; Zhou LJ; Fang MJ; Dong QL; An XH; You CX; Hao YJ
    Sci Rep; 2016 Aug; 6():31806. PubMed ID: 27558543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening.
    Choi I; Ahn CS; Lee DH; Baek SA; Jung JW; Kim JK; Lee HS; Pai HS
    Mol Cells; 2022 Sep; 45(9):660-672. PubMed ID: 35993163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening.
    Nakatsuka A; Murachi S; Okunishi H; Shiomi S; Nakano R; Kubo Y; Inaba A
    Plant Physiol; 1998 Dec; 118(4):1295-305. PubMed ID: 9847103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.
    Cantu D; Blanco-Ulate B; Yang L; Labavitch JM; Bennett AB; Powell AL
    Plant Physiol; 2009 Jul; 150(3):1434-49. PubMed ID: 19465579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.