These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34360657)

  • 21. Active Packaging of Immobilized Zinc Oxide Nanoparticles Controls Campylobacter jejuni in Raw Chicken Meat.
    Hakeem MJ; Feng J; Nilghaz A; Ma L; Seah HC; Konkel ME; Lu X
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of antimicrobial curcumin stabilized platinum nanoparticles and their anti-liver fibrosis activity for potential use in nursing care.
    Yu X; Yuan L; Zhu N; Wang K; Xia Y
    J Photochem Photobiol B; 2019 Jun; 195():27-32. PubMed ID: 31051327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial cell lysate supernatant (CLS) alteration impact on platinum nanoparticles fabrication, characterization, antioxidant and antibacterial activity.
    Eramabadi P; Masoudi M; Makhdoumi A; Mashreghi M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111292. PubMed ID: 32919653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products.
    Morsy MK; Khalaf HH; Sharoba AM; El-Tanahi HH; Cutter CN
    J Food Sci; 2014 Apr; 79(4):M675-84. PubMed ID: 24621108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A palladium-platinum bimetal nanodendritic melamine network for signal amplification in voltammetric sensing of DNA.
    Chen J; Yu C; Gao R; Geng Y; Zhao Y; Niu Y; Zhang L; Yu Y; He J
    Mikrochim Acta; 2018 Jan; 185(2):138. PubMed ID: 29594436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of Silver Nanoparticles from
    Shakhatreh MAK; Al-Rawi OF; Swedan SF; Alzoubi KH; Khabour OF; Al-Fandi M
    Curr Pharm Biotechnol; 2021; 22(9):1254-1263. PubMed ID: 33081683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Platinum nanoparticles induce damage to DNA and inhibit DNA replication.
    Nejdl L; Kudr J; Moulick A; Hegerova D; Ruttkay-Nedecky B; Gumulec J; Cihalova K; Smerkova K; Dostalova S; Krizkova S; Novotna M; Kopel P; Adam V
    PLoS One; 2017; 12(7):e0180798. PubMed ID: 28704436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of gold and silver nanoparticles, chitosan and their combinations on bacterial biofilms of food-borne pathogens.
    Chlumsky O; Purkrtova S; Michova Turonova H; Svarcova Fuchsova V; Slepicka P; Fajstavr D; Ulbrich P; Demnerova K
    Biofouling; 2020 Feb; 36(2):222-233. PubMed ID: 32316774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Green Chemistry Approach for Synthesis of Effective Anticancer Palladium Nanoparticles.
    Gurunathan S; Kim E; Han JW; Park JH; Kim JH
    Molecules; 2015 Dec; 20(12):22476-98. PubMed ID: 26694334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties.
    Anand K; Tiloke C; Phulukdaree A; Ranjan B; Chuturgoon A; Singh S; Gengan RM
    J Photochem Photobiol B; 2016 Dec; 165():87-95. PubMed ID: 27776261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.
    Hamed S; Emara M; Shawky RM; El-Domany RA; Youssef T
    J Basic Microbiol; 2017 Aug; 57(8):659-668. PubMed ID: 28543603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiation Enhancer Effect of Platinum Nanoparticles in Breast Cancer Cell Lines: In Vitro and In Silico Analyses.
    Hullo M; Grall R; Perrot Y; Mathé C; Ménard V; Yang X; Lacombe S; Porcel E; Villagrasa C; Chevillard S; Bourneuf E
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets.
    Ali SS; Moawad MS; Hussein MA; Azab M; Abdelkarim EA; Badr A; Sun J; Khalil M
    Int J Food Microbiol; 2021 Apr; 344():109116. PubMed ID: 33676332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease.
    Hughey VL; Johnson EA
    Appl Environ Microbiol; 1987 Sep; 53(9):2165-70. PubMed ID: 3118808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria.
    Pugazhendhi A; Prabakar D; Jacob JM; Karuppusamy I; Saratale RG
    Microb Pathog; 2018 Jan; 114():41-45. PubMed ID: 29146498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications.
    Puja P; Kumar P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():94-99. PubMed ID: 30521998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities.
    Nasrollahzadeh M; Sajjadi M; Dadashi J; Ghafuri H
    Adv Colloid Interface Sci; 2020 Feb; 276():102103. PubMed ID: 31978638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial, Biofilm Inhibitory and Anti-infective Activity of Metallic Nanoparticles Against Pathogens MRSA and Pseudomonas aeruginosa PA01.
    Aswathanarayan JB; Vittal RR
    Pharm Nanotechnol; 2017; 5(2):148-153. PubMed ID: 28440203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.
    Ozogul Y; Kuley E; Ucar Y; Ozogul F
    Recent Pat Food Nutr Agric; 2015; 7(1):53-61. PubMed ID: 26072990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products.
    Ravishankar S; Zhu L; Olsen CW; McHugh TH; Friedman M
    J Food Sci; 2009 Oct; 74(8):M440-5. PubMed ID: 19799671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.