BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34360697)

  • 1. The Application of an Omentum Graft or Flap in Spinal Cord Injury.
    Fay LY; Lin YR; Liou DY; Chiu CW; Yeh MY; Huang WC; Wu JC; Tsai MJ; Cheng H
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early angiogenic capabilities of the transposed omental flap after omentomyelopexy.
    Ignjatović M; Pervulov S; Cuk V; Kostić Z; Minić L
    Acta Chir Iugosl; 2001; 48(2):41-3. PubMed ID: 11889977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New surgical technique of omental pedicle graft preparation for omentomyelopexy.
    Ignjatović M; Cuk V; Zivotić-Vanović M; Minić L
    Vojnosanit Pregl; 1998; 55(3):247-54. PubMed ID: 9720439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental study on effects of omental transposition in cats with spinal cord injury].
    Shimada Y
    No To Shinkei; 1995 Sep; 47(9):863-73. PubMed ID: 7546935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury.
    Ban DX; Kong XH; Feng SQ; Ning GZ; Chen JT; Guo SF
    Brain Res; 2009 Feb; 1256():149-61. PubMed ID: 19103176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late histological changes in the transposed omental flap.
    Ignjatović M; Cerović S; Cuk V; Kostić Z; Minić L; Spaić M
    Acta Chir Iugosl; 2001; 48(3):35-8. PubMed ID: 11889984
    [No Abstract]   [Full Text] [Related]  

  • 7. [Necrosis of the omental flap].
    Ignjatović M; Zivotić-Vanović M; Cuk V; Ignjatović D; Stanković N; Minić L; Tadić R
    Acta Chir Iugosl; 1999; 46(1-2):33-7. PubMed ID: 10951796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H; Liang P; Xu Y; Wu J; Liang T; Xu X
    J Neurotrauma; 2009 Oct; 26(10):1745-57. PubMed ID: 19413502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early application of pedicled omentum to the acutely traumatised spinal cord.
    Goldsmith HS; Steward E; Duckett S
    Paraplegia; 1985 Apr; 23(2):100-12. PubMed ID: 4000690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omental transposition in chronic spinal cord injury.
    Clifton GL; Donovan WH; Dimitrijevic MM; Allen SJ; Ku A; Potts JR; Moody FG; Boake C; Sherwood AM; Edwards JV
    Spinal Cord; 1996 Apr; 34(4):193-203. PubMed ID: 8963963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory and respiratory lamina propria transplantation after spinal cord transection in rats: effects on functional recovery and axonal regeneration.
    Centenaro LA; Jaeger Mda C; Ilha J; de Souza MA; Kalil-Gaspar PI; Cunha NB; Marcuzzo S; Achaval M
    Brain Res; 2011 Dec; 1426():54-72. PubMed ID: 22041228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fetal spinal cord graft with different methods on axonal pathology after spinal cord contusion.
    Zhang Q; Liao W; Wang Z; Wu Y
    Chin J Traumatol; 2001 Aug; 4(3):147-51. PubMed ID: 11835719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Omentomyelosynangiosis--a direct intraoperative observation].
    Spaić M; Minić Lj; Djitić R; Lukić Z; Tadić R
    Vojnosanit Pregl; 2001; 58(3):249-54. PubMed ID: 11548549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury.
    Karimi-Abdolrezaee S; Eftekharpour E; Wang J; Morshead CM; Fehlings MG
    J Neurosci; 2006 Mar; 26(13):3377-89. PubMed ID: 16571744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experimental study on the treatment of spinal cord injury with transplantation of the greater omentum].
    Zheng WJ
    Zhonghua Wai Ke Za Zhi; 1989 Feb; 27(2):93-5, 125. PubMed ID: 2776547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regrowth of acute and chronic injured spinal pathways within supra-lesional post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2000; 101(1):197-210. PubMed ID: 11068148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.