BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 34360864)

  • 61. A histological evaluation of the involvement of Bio-Oss in osteoblastic differentiation and matrix synthesis.
    Tapety FI; Amizuka N; Uoshima K; Nomura S; Maeda T
    Clin Oral Implants Res; 2004 Jun; 15(3):315-24. PubMed ID: 15142094
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Guided Bone Regeneration in Standardized Calvarial Defects in Rats Using Bio-Oss and β-Tricalcium Phosphate with Adjunct Platelet-Derived Growth Factor Therapy: A Real-Time In Vivo Microcomputed Tomographic, Biomechanical, and Histologic Analysis.
    Al-Askar M; Javed F; Al-Hezaimi K; Al-Hamdan KS; Ramalingam S; Aldahmash A; Nooh N; Al-Rasheed A
    Int J Periodontics Restorative Dent; 2016; 36 Suppl():s61-73. PubMed ID: 27031635
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sinus floor augmentation with autogenous bone vs. a bovine-derived xenograft - a 5-year retrospective study.
    Lutz R; Berger-Fink S; Stockmann P; Neukam FW; Schlegel KA
    Clin Oral Implants Res; 2015 Jun; 26(6):644-8. PubMed ID: 25906198
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats.
    Al-Hezaimi K; Ramalingam S; Al-Askar M; ArRejaie AS; Nooh N; Jawad F; Aldahmash A; Atteya M; Wang CY
    Int J Oral Sci; 2016 Mar; 8(1):7-15. PubMed ID: 27025260
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Use of titanium mesh for staged localized alveolar ridge augmentation: clinical and histologic-histomorphometric evaluation.
    Proussaefs P; Lozada J
    J Oral Implantol; 2006; 32(5):237-47. PubMed ID: 17069168
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect.
    Pihlman H; Keränen P; Paakinaho K; Linden J; Hannula M; Manninen IK; Hyttinen J; Manninen M; Laitinen-Vapaavuori O
    J Mater Sci Mater Med; 2018 Oct; 29(10):156. PubMed ID: 30298429
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stem cells enhanced by human bone morphogenetic protein-2 in a canine model.
    Xiao C; Zhou H; Ge S; Tang T; Hou H; Luo M; Fan X
    Int J Mol Med; 2010 Oct; 26(4):517-25. PubMed ID: 20818491
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Experimental study on the transforming growth factor β3 combined with dental pulp stem cells in early bone integration of implant].
    Guzalinuer A; Muhetaer H; Wu H; Paerhati A
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2018 Apr; 53(4):259-263. PubMed ID: 29690697
    [No Abstract]   [Full Text] [Related]  

  • 70. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo bone formation by human alveolar-bone-derived mesenchymal stem cells obtained during implant osteotomy using biphasic calcium phosphate ceramics or Bio-Oss as carriers.
    Park JC; Oh SY; Lee JS; Park SY; Choi EY; Cho KS; Kim CS
    J Biomed Mater Res B Appl Biomater; 2016 Apr; 104(3):515-24. PubMed ID: 25939881
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects.
    Imanishi Y; Hata M; Matsukawa R; Aoyagi A; Omi M; Mizutani M; Naruse K; Ozawa S; Honda M; Matsubara T; Takebe J
    Inflamm Regen; 2021 Apr; 41(1):12. PubMed ID: 33853679
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Histomorphometric analysis of natural bone mineral for maxillary sinus augmentation.
    John HD; Wenz B
    Int J Oral Maxillofac Implants; 2004; 19(2):199-207. PubMed ID: 15101590
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular structure of the bony tissue after experimental trauma to the mandibular region followed by laser therapy.
    Rochkind S; Kogan G; Luger EG; Salame K; Karp E; Graif M; Weiss J
    Photomed Laser Surg; 2004 Jun; 22(3):249-53. PubMed ID: 15315733
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model.
    Zamani Mazdeh D; Mirshokraei P; Emami M; Mirshahi A; Karimi I
    Res Vet Sci; 2018 Jun; 118():11-18. PubMed ID: 29334646
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats.
    Su-Gwan K; Hak-Kyun K; Sung-Chul L
    J Craniomaxillofac Surg; 2001 Oct; 29(5):282-8. PubMed ID: 11673923
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Paste-like inorganic bone matrix: preclinical testing of a prototype preparation in the porcine calvaria.
    Busenlechner D; Tangl S; Fitzl C; Bernhart T; Gruber R; Watzek G
    Clin Oral Implants Res; 2009 Oct; 20(10):1099-104. PubMed ID: 19681965
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Interplay of Raloxifene and Sonochemical Bio-Oss in Early Maxillary Sinus Bone Regeneration: A Histological and Immunohistochemical Analysis in Rabbits.
    de Souza Santos AM; Dos Santos Pereira R; Montemezzi P; Mello-Machado RC; Okamoto R; Sacco R; Noronha Lisboa-Filho P; Messora MR; Mourão CF; Hochuli-Vieira E
    Medicina (Kaunas); 2023 Aug; 59(9):. PubMed ID: 37763640
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Establishment and biological effect evaluation of prevascularized porous β-tricalcium phosphate tissue engineered bone].
    Huang M; Fan J; Ma Z; Li J; Lu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):625-632. PubMed ID: 35570639
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Smurf1-targeting microRNA-136-5p-modified bone marrow mesenchymal stem cells combined with 3D-printed β-tricalcium phosphate scaffolds strengthen osteogenic activity and alleviate bone defects.
    Duan G; Lu YF; Chen HL; Zhu ZQ; Yang S; Wang YQ; Wang JQ; Jia XH
    Kaohsiung J Med Sci; 2024 Jul; 40(7):621-630. PubMed ID: 38820598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.