These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 34360877)

  • 1. Sex Differences in the Triad of Acquired Sensorineural Hearing Loss.
    Lien KH; Yang CH
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nox3-Derived Superoxide in Cochleae Induces Sensorineural Hearing Loss.
    Mohri H; Ninoyu Y; Sakaguchi H; Hirano S; Saito N; Ueyama T
    J Neurosci; 2021 May; 41(21):4716-4731. PubMed ID: 33849947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory function and dysfunction: estrogen makes a difference.
    Delhez A; Lefebvre P; Péqueux C; Malgrange B; Delacroix L
    Cell Mol Life Sci; 2020 Feb; 77(4):619-635. PubMed ID: 31522250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in hearing: Probing the role of estrogen signaling.
    Shuster BZ; Depireux DA; Mong JA; Hertzano R
    J Acoust Soc Am; 2019 Jun; 145(6):3656. PubMed ID: 31255106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulator of G Protein Signalling 4 (RGS4) as a Novel Target for the Treatment of Sensorineural Hearing Loss.
    Fok C; Bogosanovic M; Pandya M; Telang R; Thorne PR; Vlajkovic SM
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery?
    Castañeda R; Natarajan S; Jeong SY; Hong BN; Kang TH
    J Ethnopharmacol; 2019 Mar; 231():409-428. PubMed ID: 30439402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translating animal models to human therapeutics in noise-induced and age-related hearing loss.
    Kujawa SG; Liberman MC
    Hear Res; 2019 Jun; 377():44-52. PubMed ID: 30903954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related hearing impairment and the triad of acquired hearing loss.
    Yang CH; Schrepfer T; Schacht J
    Front Cell Neurosci; 2015; 9():276. PubMed ID: 26283913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoimmune sensorineural hearing loss: an immunologic perspective.
    Solares CA; Hughes GB; Tuohy VK
    J Neuroimmunol; 2003 May; 138(1-2):1-7. PubMed ID: 12742646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).
    Valero MD; Burton JA; Hauser SN; Hackett TA; Ramachandran R; Liberman MC
    Hear Res; 2017 Sep; 353():213-223. PubMed ID: 28712672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular signaling protective against noise-induced hearing loss – A role for novel intrinsic cochlear signaling involving corticotropin-releasing factor?
    Vetter DE
    Biochem Pharmacol; 2015 Sep; 97(1):1-15. PubMed ID: 26074267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
    Kujawa SG; Liberman MC
    Hear Res; 2015 Dec; 330(Pt B):191-9. PubMed ID: 25769437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purinergic Signaling and Cochlear Injury-Targeting the Immune System?
    Köles L; Szepesy J; Berekméri E; Zelles T
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptibility to acoustic trauma in young and aged gerbils.
    Boettcher FA
    J Acoust Soc Am; 2002 Dec; 112(6):2948-55. PubMed ID: 12509015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea.
    Honkura Y; Matsuo H; Murakami S; Sakiyama M; Mizutari K; Shiotani A; Yamamoto M; Morita I; Shinomiya N; Kawase T; Katori Y; Motohashi H
    Sci Rep; 2016 Jan; 6():19329. PubMed ID: 26776972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: A preliminary study.
    Chang YS; Park H; Hong SH; Chung WH; Cho YS; Moon IJ
    PLoS One; 2019; 14(6):e0217790. PubMed ID: 31158267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth Hormone and the Auditory Pathway: Neuromodulation and Neuroregeneration.
    Gómez JG; Devesa J
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostaglandin E receptor subtype EP4 agonist protects cochleae against noise-induced trauma.
    Hori R; Nakagawa T; Sugimoto Y; Sakamoto T; Yamamoto N; Hamaguchi K; Ito J
    Neuroscience; 2009 Jun; 160(4):813-9. PubMed ID: 19303430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic inflammation - inflammaging - in the ageing cochlea: A novel target for future presbycusis therapy.
    Watson N; Ding B; Zhu X; Frisina RD
    Ageing Res Rev; 2017 Nov; 40():142-148. PubMed ID: 29017893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent Auditory Nerve Encoding Deficits Between Two Common Etiologies of Sensorineural Hearing Loss.
    Henry KS; Sayles M; Hickox AE; Heinz MG
    J Neurosci; 2019 Aug; 39(35):6879-6887. PubMed ID: 31285299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.