These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 34360990)
1. Modulation of Nrf2 and NF-κB Signaling Pathways by Naturally Occurring Compounds in Relation to Cancer Prevention and Therapy. Are Combinations Better Than Single Compounds? Krajka-Kuźniak V; Baer-Dubowska W Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360990 [TBL] [Abstract][Full Text] [Related]
2. Phytochemicals suppress nuclear factor-κB signaling: impact on health span and the aging process. Salminen A; Kauppinen A; Kaarniranta K Curr Opin Clin Nutr Metab Care; 2012 Jan; 15(1):23-8. PubMed ID: 22108095 [TBL] [Abstract][Full Text] [Related]
3. Targeting Nrf2 and NF-κB Signaling Pathways in Cancer Prevention: The Role of Apple Phytochemicals. Gado F; Ferrario G; Della Vedova L; Zoanni B; Altomare A; Carini M; Aldini G; D'Amato A; Baron G Molecules; 2023 Jan; 28(3):. PubMed ID: 36771023 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Shen G; Jeong WS; Hu R; Kong AN Antioxid Redox Signal; 2005; 7(11-12):1648-63. PubMed ID: 16356127 [TBL] [Abstract][Full Text] [Related]
5. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Lee JH; Khor TO; Shu L; Su ZY; Fuentes F; Kong AN Pharmacol Ther; 2013 Feb; 137(2):153-71. PubMed ID: 23041058 [TBL] [Abstract][Full Text] [Related]
6. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways. Ren J; Su D; Li L; Cai H; Zhang M; Zhai J; Li M; Wu X; Hu K Toxicol Appl Pharmacol; 2020 Jan; 387():114846. PubMed ID: 31790703 [TBL] [Abstract][Full Text] [Related]
7. Anti-Inflammatory Mechanism Involved in Pomegranate-Mediated Prevention of Breast Cancer: the Role of NF-κB and Nrf2 Signaling Pathways. Mandal A; Bhatia D; Bishayee A Nutrients; 2017 Apr; 9(5):. PubMed ID: 28452959 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Impact of Xanthohumol and Phenethyl Isothiocyanate and Their Combination on Nrf2 and NF-κB Pathways in HepG2 Cells In Vitro and Tumor Burden In Vivo. Cykowiak M; Krajka-Kuźniak V; Kleszcz R; Kucińska M; Szaefer H; Piotrowska-Kempisty H; Plewiński A; Murias M; Baer-Dubowska W Nutrients; 2021 Aug; 13(9):. PubMed ID: 34578877 [No Abstract] [Full Text] [Related]
9. Combination of xanthohumol and phenethyl isothiocyanate inhibits NF-κB and activates Nrf2 in pancreatic cancer cells. Krajka-Kuźniak V; Cykowiak M; Szaefer H; Kleszcz R; Baer-Dubowska W Toxicol In Vitro; 2020 Jun; 65():104799. PubMed ID: 32070777 [TBL] [Abstract][Full Text] [Related]
10. Trianthema portulacastrum Linn. displays anti-inflammatory responses during chemically induced rat mammary tumorigenesis through simultaneous and differential regulation of NF-κB and Nrf2 signaling pathways. Mandal A; Bishayee A Int J Mol Sci; 2015 Jan; 16(2):2426-45. PubMed ID: 25622256 [TBL] [Abstract][Full Text] [Related]
11. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Ajit D; Simonyi A; Li R; Chen Z; Hannink M; Fritsche KL; Mossine VV; Smith RE; Dobbs TK; Luo R; Folk WR; Gu Z; Lubahn DB; Weisman GA; Sun GY Neurochem Int; 2016 Jul; 97():49-56. PubMed ID: 27166148 [TBL] [Abstract][Full Text] [Related]
12. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways. Gan FF; Ling H; Ang X; Reddy SA; Lee SS; Yang H; Tan SH; Hayes JD; Chui WK; Chew EH Toxicol Appl Pharmacol; 2013 Nov; 272(3):852-62. PubMed ID: 23899529 [TBL] [Abstract][Full Text] [Related]
13. Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-kappa B and AP-1 in abnormal cancer cells. Gopalakrishnan A; Tony Kong AN Food Chem Toxicol; 2008 Apr; 46(4):1257-70. PubMed ID: 17950513 [TBL] [Abstract][Full Text] [Related]
14. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB. de Oliveira MR; de Souza ICC; Fürstenau CR Mol Neurobiol; 2018 Jan; 55(1):890-897. PubMed ID: 28083817 [TBL] [Abstract][Full Text] [Related]
15. NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Surh YJ Asia Pac J Clin Nutr; 2008; 17 Suppl 1():269-72. PubMed ID: 18296353 [TBL] [Abstract][Full Text] [Related]
16. Gambogic acid induces heme oxygenase-1 through Nrf2 signaling pathway and inhibits NF-κB and MAPK activation to reduce inflammation in LPS-activated RAW264.7 cells. Ren J; Li L; Wang Y; Zhai J; Chen G; Hu K Biomed Pharmacother; 2019 Jan; 109():555-562. PubMed ID: 30399591 [TBL] [Abstract][Full Text] [Related]
17. Dietary phytochemicals targeting Nrf2 for chemoprevention in breast cancer. Wang P; Long F; Lin H; Wang T Food Funct; 2022 Apr; 13(8):4273-4285. PubMed ID: 35373233 [TBL] [Abstract][Full Text] [Related]
18. Anti-inflammatory effects of higenamine (Hig) on LPS-activated mouse microglia (BV2) through NF-κB and Nrf2/HO-1 signaling pathways. Yang S; Chu S; Ai Q; Zhang Z; Gao Y; Lin M; Liu Y; Hu Y; Li X; Peng Y; Pan Y; He Q; Chen N Int Immunopharmacol; 2020 Aug; 85():106629. PubMed ID: 32535536 [TBL] [Abstract][Full Text] [Related]
19. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. Surh YJ; Kundu JK; Na HK; Lee JS J Nutr; 2005 Dec; 135(12 Suppl):2993S-3001S. PubMed ID: 16317160 [TBL] [Abstract][Full Text] [Related]
20. Anticancer mechanism of troxerutin via targeting Nrf2 and NF-κB signalling pathways in hepatocarcinoma cell line. Thomas NS; George K; Selvam AAA Toxicol In Vitro; 2019 Feb; 54():317-329. PubMed ID: 30389603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]