These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Neuroadaptive changes and behavioral effects after a sensitization regime of MDPV. Duart-Castells L; López-Arnau R; Buenrostro-Jáuregui M; Muñoz-Villegas P; Valverde O; Camarasa J; Pubill D; Escubedo E Neuropharmacology; 2019 Jan; 144():271-281. PubMed ID: 30321610 [TBL] [Abstract][Full Text] [Related]
24. An assessment of MDPV-induced place preference in adult Sprague-Dawley rats. King HE; Wetzell B; Rice KC; Riley AL Drug Alcohol Depend; 2015 Jan; 146():116-9. PubMed ID: 25468817 [TBL] [Abstract][Full Text] [Related]
25. Self-administration of the synthetic cathinones 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopentiophenone (α-PVP) in rhesus monkeys. Collins GT; Sulima A; Rice KC; France CP Psychopharmacology (Berl); 2019 Dec; 236(12):3677-3685. PubMed ID: 31346629 [TBL] [Abstract][Full Text] [Related]
27. Mephedrone, methylone and 3,4-methylenedioxypyrovalerone (MDPV) induce conditioned place preference in mice. Karlsson L; Andersson M; Kronstrand R; Kugelberg FC Basic Clin Pharmacol Toxicol; 2014 Nov; 115(5):411-6. PubMed ID: 24739011 [TBL] [Abstract][Full Text] [Related]
28. Cannabidiol prevents priming- and stress-induced reinstatement of the conditioned place preference induced by cocaine in mice. Calpe-López C; Gasparyan A; Navarrete F; Manzanares J; Miñarro J; Aguilar MA J Psychopharmacol; 2021 Jul; 35(7):864-874. PubMed ID: 33427014 [TBL] [Abstract][Full Text] [Related]
29. Cytotoxic Activity of Pyrovalerone Derivatives, an Emerging Group of Psychostimulant Designer Cathinones. Wojcieszak J; Andrzejczak D; Woldan-Tambor A; Zawilska JB Neurotox Res; 2016 Aug; 30(2):239-50. PubMed ID: 27295059 [TBL] [Abstract][Full Text] [Related]
30. Cannabidiol (CBD) reduces cocaine-environment memory in mice. Chesworth R; Karl T Pharmacol Biochem Behav; 2020 Dec; 199():173065. PubMed ID: 33127382 [TBL] [Abstract][Full Text] [Related]
31. Paradoxical anxiolytic effect of the 'bath salt' synthetic cathinone MDPV during early abstinence is inhibited by a chemokine CXCR4 or CCR5 receptor antagonist. Simmons SJ; Oliver CF; McCloskey NS; Reitz AB; Nayak SU; Watson MN; Rawls SM Drug Alcohol Depend; 2022 Jan; 230():109204. PubMed ID: 34871976 [TBL] [Abstract][Full Text] [Related]
32. Apoptotic effects of the 'designer drug' methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain. Adám A; Gerecsei LI; Lepesi N; Csillag A Neurotoxicology; 2014 Sep; 44():231-6. PubMed ID: 25063209 [TBL] [Abstract][Full Text] [Related]
35. MDPV "high-responder" rats also self-administer more oxycodone than their "low-responder" counterparts under a fixed ratio schedule of reinforcement. Gannon BM; Rice KC; Murnane KS Psychopharmacology (Berl); 2021 Apr; 238(4):1183-1192. PubMed ID: 33484299 [TBL] [Abstract][Full Text] [Related]
36. Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Glennon RA; Young R Brain Res Bull; 2016 Sep; 126(Pt 1):111-126. PubMed ID: 27142261 [TBL] [Abstract][Full Text] [Related]
37. Individual Differences in the Relative Reinforcing Effects of 3,4-Methylenedioxypyrovalerone under Fixed and Progressive Ratio Schedules of Reinforcement in Rats. Gannon BM; Galindo KI; Rice KC; Collins GT J Pharmacol Exp Ther; 2017 Apr; 361(1):181-189. PubMed ID: 28179474 [TBL] [Abstract][Full Text] [Related]
38. Influence of Contingent and Noncontingent Drug Histories on the Development of High Levels of MDPV Self-Administration. Doyle MR; Sulima A; Rice KC; Collins GT J Pharmacol Exp Ther; 2021 Nov; 379(2):108-116. PubMed ID: 34413199 [TBL] [Abstract][Full Text] [Related]
39. Cannabidiol disrupts conditioned fear expression and cannabidiolic acid reduces trauma-induced anxiety-related behaviour in mice. Assareh N; Gururajan A; Zhou C; Luo JL; Kevin RC; Arnold JC Behav Pharmacol; 2020 Sep; 31(6):591-596. PubMed ID: 32483052 [TBL] [Abstract][Full Text] [Related]
40. Synthetic cathinone MDPV downregulates glutamate transporter subtype I (GLT-1) and produces rewarding and locomotor-activating effects that are reduced by a GLT-1 activator. Gregg RA; Hicks C; Nayak SU; Tallarida CS; Nucero P; Smith GR; Reitz AB; Rawls SM Neuropharmacology; 2016 Sep; 108():111-9. PubMed ID: 27085607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]