These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34361108)
1. alfaNET: A Database of Alfalfa-Bacterial Stem Blight Protein-Protein Interactions Revealing the Molecular Features of the Disease-causing Bacteria. Kataria R; Kaundal R Int J Mol Sci; 2021 Aug; 22(15):. PubMed ID: 34361108 [TBL] [Abstract][Full Text] [Related]
2. Computational Systems Biology of Alfalfa - Bacterial Blight Host-Pathogen Interactions: Uncovering the Complex Molecular Networks for Developing Durable Disease Resistant Crop. Kataria R; Duhan N; Kaundal R Front Plant Sci; 2021; 12():807354. PubMed ID: 35251063 [No Abstract] [Full Text] [Related]
3. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae. Nemchinov LG; Shao J; Lee MN; Postnikova OA; Samac DA PLoS One; 2017; 12(12):e0189781. PubMed ID: 29244864 [TBL] [Abstract][Full Text] [Related]
5. Diversity of Strains in the Lipps SM; Castell-Miller C; Morris CE; Ishii S; Samac DA Phytopathology; 2024 Apr; 114(4):802-812. PubMed ID: 37913751 [TBL] [Abstract][Full Text] [Related]
6. GreeningDB: A Database of Host-Pathogen Protein-Protein Interactions and Annotation Features of the Bacteria Causing Huanglongbing HLB Disease. Loaiza CD; Duhan N; Kaundal R Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639237 [TBL] [Abstract][Full Text] [Related]
7. Genetic Mapping of Tolerance to Bacterial Stem Blight Caused by Moya YS; Medina C; Herrera B; Chamba F; Yu LX; Xu Z; Samac DA Plants (Basel); 2023 Dec; 13(1):. PubMed ID: 38202418 [TBL] [Abstract][Full Text] [Related]
8. WeCoNET: a host-pathogen interactome database for deciphering crucial molecular networks of wheat-common bunt cross-talk mechanisms. Kataria R; Kaundal R Plant Methods; 2022 Jun; 18(1):73. PubMed ID: 35658913 [TBL] [Abstract][Full Text] [Related]
9. Genome Sequence Resource for Strains of Lipps SM; Samac DA; Ishii S Phytopathology; 2022 Sep; 112(9):2028-2031. PubMed ID: 35926585 [No Abstract] [Full Text] [Related]
10. HopA1 Effector from Dahale SK; Ghosh D; Ingole KD; Chugani A; Kim SH; Bhattacharjee S Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299060 [No Abstract] [Full Text] [Related]
11. TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem. Duhan N; Kataria R; Kaundal R Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806459 [TBL] [Abstract][Full Text] [Related]
12. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. Cao FY; Khan M; Taniguchi M; Mirmiran A; Moeder W; Lumba S; Yoshioka K; Desveaux D Plant J; 2019 Oct; 100(1):187-198. PubMed ID: 31148337 [TBL] [Abstract][Full Text] [Related]
13. Using Bioinformatics and Molecular Biology to Streamline Construction of Effector Libraries for Phytopathogenic Pseudomonas syringae Strains. Jayaraman J; Halane MK; Choi S; McCann HC; Sohn KH Methods Mol Biol; 2019; 1991():1-12. PubMed ID: 31041757 [TBL] [Abstract][Full Text] [Related]
14. In silico prediction of drug targets in phytopathogenic Pseudomonas syringae pv. phaseolicola: charting a course for agrigenomics translation research. Katara P; Grover A; Sharma V OMICS; 2012 Dec; 16(12):700-6. PubMed ID: 23215808 [TBL] [Abstract][Full Text] [Related]
15. Phenotypically and Genotypically Heterogeneous Strains of Ansari M; Taghavi SM; Zarei S; Mehrb-Moghadam S; Mafakheri H; Hamidizade M; Osdaghi E Plant Dis; 2019 Dec; 103(12):3199-3208. PubMed ID: 31642735 [TBL] [Abstract][Full Text] [Related]
16. Rpa1 mediates an immune response to avrRpm1 Yoon M; Rikkerink EHA Plant J; 2020 May; 102(4):688-702. PubMed ID: 31849122 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal Monitoring of Park E; Lee HY; Woo J; Choi D; Dinesh-Kumar SP Plant Cell; 2017 Jul; 29(7):1571-1584. PubMed ID: 28619883 [TBL] [Abstract][Full Text] [Related]
18. Pseudomonas syringae: what it takes to be a pathogen. Xin XF; Kvitko B; He SY Nat Rev Microbiol; 2018 May; 16(5):316-328. PubMed ID: 29479077 [TBL] [Abstract][Full Text] [Related]
19. AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit. Jayaraman J; Yoon M; Applegate ER; Stroud EA; Templeton MD Mol Plant Pathol; 2020 Nov; 21(11):1467-1480. PubMed ID: 32969167 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Xin XF; He SY Annu Rev Phytopathol; 2013; 51():473-98. PubMed ID: 23725467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]