BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34361235)

  • 1. Synergistic Effect of Nanofluids and Surfactants on Heavy Oil Recovery and Oil-Wet Calcite Wettability.
    Hou J; Sun L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability alteration of oil-wet carbonate by silica nanofluid.
    Al-Anssari S; Barifcani A; Wang S; Maxim L; Iglauer S
    J Colloid Interface Sci; 2016 Jan; 461():435-442. PubMed ID: 26414426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability reversal on oil-wet calcite surfaces: Experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Aug; 619():168-178. PubMed ID: 35381485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Stabilized Alkylbenzene Sulfonate Surfactants on the Nanoscale with Water-Wet and Oil-Wet Carbonate Surfaces under High-Salinity and High-Temperature Conditions: A QCM-D Study.
    Kawelah MR; Gizzatov A; Jung D; Abdel-Fattah AI
    ACS Omega; 2020 May; 5(19):10838-10846. PubMed ID: 32455204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the Adsorption Behavior of Surfactants on Carbonate Surface by Experiment and Molecular Dynamics Simulation.
    Hou J; Lin S; Du J; Sui H
    Front Chem; 2022; 10():847986. PubMed ID: 35464211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system.
    Adil M; Mohd Zaid H; Raza F; Agam MA
    PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactants Enhanced Heavy Oil-Solid Separation from Carbonate Asphalt Rocks-Experiment and Molecular Dynamic Simulation.
    Hou J; Du J; Sui H; Sun L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-induced wettability reversal on oil-wet calcite surfaces: Experimentation and molecular dynamics simulations with scaled-charges.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Mar; 609():890-900. PubMed ID: 34848057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A positively charged calcite surface model for molecular dynamics studies of wettability alteration.
    Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2020 Jun; 569():128-139. PubMed ID: 32105900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs.
    Salehi M; Johnson SJ; Liang JT
    Langmuir; 2008 Dec; 24(24):14099-107. PubMed ID: 19053658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of wettability alteration using surfactants in carbonate reservoirs.
    Yao Y; Wei M; Kang W
    Adv Colloid Interface Sci; 2021 Aug; 294():102477. PubMed ID: 34242888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Efficiency of Zinc Oxide/Montmorillonite Nanocomposites and a New Derived Saponin in Liquid/Liquid/Solid Interface-Included Systems: Application in Nanotechnology-Assisted Enhanced Oil Recovery.
    Nourinia A; Manshad AK; Shadizadeh SR; Ali JA; Iglauer S; Keshavarz A; Mohammadi AH; Ali M
    ACS Omega; 2022 Jul; 7(29):24951-24972. PubMed ID: 35910115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability Alteration and Adsorption of Mixed Nonionic and Anionic Surfactants on Carbonates.
    Das S; Katiyar A; Rohilla N; Nguyen QP; Bonnecaze RT
    Langmuir; 2020 Dec; 36(50):15410-15422. PubMed ID: 33290072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability Alteration of Calcite by Nonionic Surfactants.
    Das S; Nguyen Q; Patil PD; Yu W; Bonnecaze RT
    Langmuir; 2018 Sep; 34(36):10650-10658. PubMed ID: 30095917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions.
    Xie Y; Khishvand M; Piri M
    Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing and Quantifying Wettability Alteration by Silica Nanofluids.
    Li S; Sng A; Daniel D; Lau HC; Torsæter O; Stubbs LP
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41182-41189. PubMed ID: 34424661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of wettability alteration, IFT reduction, and injection schemes during surfactant/smart water flooding for EOR application.
    Noorizadeh Bajgirani SS; Saeedi Dehaghani AH
    Sci Rep; 2023 Jul; 13(1):11362. PubMed ID: 37443172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Surfactant Charge and Molecular Structure on Wettability Alteration of Calcite: Insights from Molecular Dynamics Simulations.
    Kubelka J; Bai S; Piri M
    J Phys Chem B; 2021 Feb; 125(4):1293-1305. PubMed ID: 33475371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Sulfate Ions on Crude Oil Adsorption/Desorption on Carbonate Rocks: Experimental and Molecular Simulations.
    Liu N; Qi H; Yu C; Jiang W; Brantson ET; Xu H
    ACS Omega; 2024 Mar; 9(12):14210-14216. PubMed ID: 38559911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.