BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34361308)

  • 1. Speciation of Main Nutrients (N/P/K) in Hydrochars Produced from the Hydrothermal Carbonization of Swine Manure under Different Reaction Temperatures.
    Xiong J; Chen S; Wang J; Wang Y; Fang X; Huang H
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients.
    Belete YZ; Mau V; Yahav Spitzer R; Posmanik R; Jassby D; Iddya A; Kassem N; Tester JW; Gross A
    Bioresour Technol; 2021 Aug; 333():125164. PubMed ID: 33906016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior.
    Lang Q; Guo Y; Zheng Q; Liu Z; Gai C
    Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization.
    Lang Q; Zhang B; Liu Z; Jiao W; Xia Y; Chen Z; Li D; Ma J; Gai C
    J Environ Manage; 2019 Mar; 233():440-446. PubMed ID: 30593003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate.
    Celletti S; Bergamo A; Benedetti V; Pecchi M; Patuzzi F; Basso D; Baratieri M; Cesco S; Mimmo T
    J Environ Manage; 2021 Feb; 280():111635. PubMed ID: 33187784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure.
    Song C; Yuan W; Shan S; Ma Q; Zhang H; Wang X; Niazi NK; Wang H
    Chemosphere; 2020 Mar; 243():125331. PubMed ID: 31995863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars.
    Nzediegwu C; Naeth MA; Chang SX
    Bioresour Technol; 2021 Jun; 330():124976. PubMed ID: 33743274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes.
    Ipiales RP; Mohedano AF; Diaz-Portuondo E; Diaz E; de la Rubia MA
    Waste Manag; 2023 Sep; 169():267-275. PubMed ID: 37481937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties.
    Zhou S; Liang H; Han L; Huang G; Yang Z
    Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil.
    Xu Y; Wang B; Ding S; Zhao M; Ji Y; Xie W; Feng Z; Feng Y
    Sci Total Environ; 2022 Dec; 850():157953. PubMed ID: 35963404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk.
    Lang Q; Chen M; Guo Y; Liu Z; Gai C
    J Environ Manage; 2019 Mar; 234():97-103. PubMed ID: 30616193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-hydrothermal carbonization of corn stalk and swine manure: Combustion behavior of hydrochar by thermogravimetric analysis.
    Lang Q; Zhang B; Liu Z; Chen Z; Xia Y; Li D; Ma J; Gai C
    Bioresour Technol; 2019 Jan; 271():75-83. PubMed ID: 30265955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and toxicity of polycyclic aromatic hydrocarbons during CaO assisted hydrothermal carbonization of swine manure.
    Lang Q; Zhang B; Li Y; Liu Z; Jiao W
    Waste Manag; 2019 Dec; 100():84-90. PubMed ID: 31525676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on the fuel properties of food waste and coal blend treated under co-hydrothermal carbonization.
    Ul Saqib N; Sarmah AK; Baroutian S
    Waste Manag; 2019 Apr; 89():236-246. PubMed ID: 31079736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of pig manure-derived hydrochars for their potential application as fertilizer.
    Song C; Shan S; Müller K; Wu S; Niazi NK; Xu S; Shen Y; Rinklebe J; Liu D; Wang H
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25772-25779. PubMed ID: 29076024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of hydrochar and process water from the hydrothermal carbonization of Refuse Derived Fuel.
    Nobre C; Alves O; Durão L; Şen A; Vilarinho C; Gonçalves M
    Waste Manag; 2021 Feb; 120():303-313. PubMed ID: 33333468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure.
    Gascó G; Paz-Ferreiro J; Álvarez ML; Saa A; Méndez A
    Waste Manag; 2018 Sep; 79():395-403. PubMed ID: 30343769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synergistic combination of nutrient reclamation from manure and resultant hydrochar upgradation by acid-supported hydrothermal carbonization.
    Dai L; Yang B; Li H; Tan F; Zhu N; Zhu Q; He M; Ran Y; Hu G
    Bioresour Technol; 2017 Nov; 243():860-866. PubMed ID: 28732407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion.
    Li CS; Cai RR
    Sci Total Environ; 2022 Sep; 838(Pt 2):155867. PubMed ID: 35568172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swine manure management by hydrothermal carbonization: Comparative study of batch and continuous operation.
    Ipiales RP; Sarrion A; Diaz E; de la Rubia MA; Diaz-Portuondo E; Coronella CJ; Mohedano AF
    Environ Res; 2024 Mar; 245():118062. PubMed ID: 38157959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.