These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34361341)
1. Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing. Huang Y; Chen M; Xie A; Wang Y; Xu X Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361341 [TBL] [Abstract][Full Text] [Related]
2. Radio-Absorbing Materials Based on Polymer Composites and Their Application to Solving the Problems of Electromagnetic Compatibility. Fionov A; Kraev I; Yurkov G; Solodilov V; Zhukov A; Surgay A; Kuznetsova I; Kolesov V Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893990 [TBL] [Abstract][Full Text] [Related]
3. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Qin M; Zhang L; Wu H Adv Sci (Weinh); 2022 Apr; 9(10):e2105553. PubMed ID: 35128836 [TBL] [Abstract][Full Text] [Related]
4. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. Han M; Yin X; Wu H; Hou Z; Song C; Li X; Zhang L; Cheng L ACS Appl Mater Interfaces; 2016 Aug; 8(32):21011-9. PubMed ID: 27454148 [TBL] [Abstract][Full Text] [Related]
5. Developing MXenes from Wireless Communication to Electromagnetic Attenuation. He P; Cao MS; Cao WQ; Yuan J Nanomicro Lett; 2021 Apr; 13(1):115. PubMed ID: 34138345 [TBL] [Abstract][Full Text] [Related]
6. Promising Ti Liang L; Han G; Li Y; Zhao B; Zhou B; Feng Y; Ma J; Wang Y; Zhang R; Liu C ACS Appl Mater Interfaces; 2019 Jul; 11(28):25399-25409. PubMed ID: 31259512 [TBL] [Abstract][Full Text] [Related]
7. Recent development of metal-organic frameworks and their composites in electromagnetic wave absorption and shielding applications. Wei K; Shi Y; Tan X; Shalash M; Ren J; Faheim AA; Jia C; Huang R; Sheng Y; Guo Z; Ge S Adv Colloid Interface Sci; 2024 Oct; 332():103271. PubMed ID: 39146581 [TBL] [Abstract][Full Text] [Related]
8. Lightweight polyurethane composite foam for electromagnetic interference shielding with high absorption characteristic. Zheng X; Zhang H; Jiang R; Liu Z; Zhu S; Li W; Jiang L; Zhou X J Colloid Interface Sci; 2023 Nov; 649():279-289. PubMed ID: 37348347 [TBL] [Abstract][Full Text] [Related]
9. In Situ Fabrication of Magnetic and Hierarchically Porous Carbon Films for Efficient Electromagnetic Wave Shielding and Absorption. Li J; Chu W; Gao Q; Zhang H; He X; Wang B ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35833957 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Interpretation of Electromagnetic Interference Shielding Efficiency: Is It Really a Wave Absorber or a Reflector? Hwang U; Kim J; Seol M; Lee B; Park IK; Suhr J; Nam JD ACS Omega; 2022 Feb; 7(5):4135-4139. PubMed ID: 35155907 [TBL] [Abstract][Full Text] [Related]
11. Confined Magnetic-Dielectric Balance Boosted Electromagnetic Wave Absorption. Wang L; Huang M; Qian X; Liu L; You W; Zhang J; Wang M; Che R Small; 2021 Jul; 17(30):e2100970. PubMed ID: 34145736 [TBL] [Abstract][Full Text] [Related]
12. Metal-Organic Framework Derived Hierarchical Co/C@V Zhou C; Wu C; Liu D; Yan M Chemistry; 2019 Feb; 25(9):2234-2241. PubMed ID: 30521116 [TBL] [Abstract][Full Text] [Related]
13. Poly(dimethylsilylene)diacetylene-Guided ZIF-Based Heterostructures for Full Ku-Band Electromagnetic Wave Absorption. Miao P; Cheng K; Li H; Gu J; Chen K; Wang S; Wang D; Liu TX; Xu BB; Kong J ACS Appl Mater Interfaces; 2019 May; 11(19):17706-17713. PubMed ID: 31013047 [TBL] [Abstract][Full Text] [Related]
14. Electromagnetic absorption enhancing mechanisms by modified biochar derived from Hao Z; Liu J; He X; Meng Y; Wang X; Liu D; Yang N; Hou W; Bian C Nanoscale; 2022 Oct; 14(39):14508-14519. PubMed ID: 36156672 [TBL] [Abstract][Full Text] [Related]
15. Functionalized Graphene/Nickel/Polyaniline Ternary Nanocomposites: Fabrication and Application as Electromagnetic Wave Absorbers. Manna R; Ghosh K; Srivastava SK Langmuir; 2021 Jun; 37(24):7430-7441. PubMed ID: 34115512 [TBL] [Abstract][Full Text] [Related]
16. Highly Cuboid-Shaped Heterobimetallic Metal-Organic Frameworks Derived from Porous Co/ZnO/C Microrods with Improved Electromagnetic Wave Absorption Capabilities. Liao Q; He M; Zhou Y; Nie S; Wang Y; Hu S; Yang H; Li H; Tong Y ACS Appl Mater Interfaces; 2018 Aug; 10(34):29136-29144. PubMed ID: 30070478 [TBL] [Abstract][Full Text] [Related]
17. Enhanced microwave absorption properties of conducting polymer@graphene composite to counteract electromagnetic radiation pollution: green EMI shielding. Kumari S; Dalal J; Kumar A; Pal R; Chahal R; Ohlan A RSC Adv; 2024 Jan; 14(1):662-676. PubMed ID: 38173587 [TBL] [Abstract][Full Text] [Related]
18. Confinedly growing and tailoring of Co Zhang D; Liu T; Zhang M; Zhang H; Yang X; Cheng J; Shu J; Li L; Cao M Nanotechnology; 2020 Aug; 31(32):325703. PubMed ID: 32315995 [TBL] [Abstract][Full Text] [Related]
19. Recent advances on outstanding microwave absorption and electromagnetic interference shielding nanocomposites of ZnO semiconductor. Yadav RS; Kuřitka I Adv Colloid Interface Sci; 2024 Apr; 326():103137. PubMed ID: 38555833 [TBL] [Abstract][Full Text] [Related]
20. Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review. Karim SS; Murtaza Z; Farrukh S; Umer MA; Ali SS; Younas M; Mubashir M; Saqib S; Ayoub M; Bokhari A; Peter AP; Khoo KS; Ullah S; Show PL Environ Res; 2022 Apr; 205():112402. PubMed ID: 34838569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]