These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34361362)

  • 1. Detection and Identification of Defects in 3D-Printed Dielectric Structures via Thermographic Inspection and Deep Neural Networks.
    Szymanik B; Psuj G; Hashemi M; Lopato P
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised learning-enabled pulsed infrared thermographic microscopy of subsurface defects in stainless steel.
    Zhang X; Fang T; Saniie J; Bakhtiari S; Heifetz A
    Sci Rep; 2024 Jun; 14(1):14865. PubMed ID: 38937533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep-Learning-based 3D Defect Quantitative Inspection System in CC Products Surface.
    Zhao L; Li F; Zhang Y; Xu X; Xiao H; Feng Y
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32059442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Evaluation of 3D-Printed Materials' Structural Properties Using Active Infrared Thermography and Deep Neural Networks Trained on the Numerical Data.
    Szymanik B
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printed Subsurface Defect Detection by Active Thermography Data-Processing Algorithm.
    de Santana ÉC; da Silva WF; Grosso Lima M; Ribeiro Pereira G; Riffel DB
    3D Print Addit Manuf; 2023 Jun; 10(3):420-427. PubMed ID: 37346194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing Depth of Defects with Low Size/Depth Aspect Ratio and Low Thermal Reflection by Using Pulsed IR Thermography.
    Moskovchenko AI; Švantner M; Vavilov VP; Chulkov AO
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermographic Inspection of Internal Defects in Steel Structures: Analysis of Signal Processing Techniques in Pulsed Thermography.
    Chung Y; Shrestha R; Lee S; Kim W
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative Deep Learning-Based Thermographic Inspection of Artwork.
    Liu Y; Wang F; Jiang Z; Sfarra S; Liu K; Yao Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principal Component Thermography for Defect Detection in Concrete.
    Milovanović B; Gaši M; Gumbarević S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared Thermography Approach for Pipelines and Cylindrical Based Geometries.
    Amer S; Al Zarkani H; Sfarra S; Omar M
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32708085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of Deep Learning in Thermographic Monitoring of Cultural Heritage and Improvement by Automatic Thermogram Pre-Processing Algorithms.
    Garrido I; Erazo-Aux J; Lagüela S; Sfarra S; Ibarra-Castanedo C; Pivarčiová E; Gargiulo G; Maldague X; Arias P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Spatiotemporal Deep Neural Network Useful for Defect Identification and Reconstruction of Artworks Using Infrared Thermography.
    Moradi M; Ghorbani R; Sfarra S; Tax DMJ; Zarouchas D
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Defects in Geomembranes Using Quasi-Active Infrared Thermography.
    Ma Y; Rose F; Wong L; Vien BS; Kuen T; Rajic N; Kodikara J; Chiu W
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in Active Infrared Imaging for Defect Detection in the Renewable and Electronic Industries.
    Zhao X; Zhao Y; Hu S; Wang H; Zhang Y; Ming W
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO
    Skorski M; Esenther J; Ahmed Z; Miller AE; Hartings MR
    Sci Technol Adv Mater; 2016; 17(1):89-97. PubMed ID: 27375367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture Surface of 3D Printed Honeycomb Structures at Low Temperature Environments.
    Choi JH; Leeghim H; Ahn JH; Choi DS; Lee CY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4235-4238. PubMed ID: 31968448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameters Identification of the Anand Material Model for 3D Printed Structures.
    Fusek M; Paška Z; Rojíček J; Fojtík F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid analysis for indicating patients with breast cancer using temperature time series.
    Silva LF; Santos AA; Bravo RS; Silva AC; Muchaluat-Saade DC; Conci A
    Comput Methods Programs Biomed; 2016 Jul; 130():142-53. PubMed ID: 27208529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.