These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34361501)

  • 1. Interdiffusion and Intermetallic Compounds at Al/Cu Interfaces in Al-50vol.%Cu Composite Prepared by Solid-State Sintering.
    Kim D; Kim K; Kwon H
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Formation Behaviour of Al-Cu Intermetallic Compounds in Al-50vol%Cu Composites Prepared by Spark Plasma Sintering under High Pressure.
    Kim D; Kim K; Kwon H
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al⁻Cu Composite Materials Fabricated by Spark Plasma Sintering.
    Kim K; Kim D; Park K; Cho M; Cho S; Kwon H
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semisolid State Sintering Behavior of Aluminum⁻Stainless Steel 316L Composite Materials by Powder Metallurgy.
    Park K; Kim D; Kim K; Cho S; Takagi K; Kwon H
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31067717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.
    Lee J; Jeong H
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8589-92. PubMed ID: 26726557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse Plasma Sintering of NiAl-Al
    Konopka K; Zygmuntowicz J; Krasnowski M; Cymerman K; Wachowski M; Piotrkiewicz P
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural and mechanical characterization of Al/Cu interface in a bimetallic composite produced by compound casting.
    Ahmadzadeh Salout S; Mirbagheri SMH
    Sci Rep; 2024 Mar; 14(1):7529. PubMed ID: 38553495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of Intermetallic Compounds of Al-Ti Composite Manufactured by Spark Plasma Sintering.
    Park K; Kim D; Kim K; Cho S; Kwon H
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructures and Properties of Cu-rGO Composites Prepared by Microwave Sintering.
    Chen X; Zhao L; Jiang L; Wang H
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nano Copper on the Densification of Spark Plasma Sintered W-Cu Composites.
    Madhur V; Srikanth M; Annamalai AR; Muthuchamy A; Agrawal DK; Jen CP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and Mechanical Properties of Nanocrystalline Al-Zn-Mg-Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Cheng J; Cai Q; Zhao B; Yang S; Chen F; Li B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of SiC and Cu Particles to Enhance Thermal and Mechanical Properties of Al Matrix Composites.
    Wu D; Huang C; Wang Y; An Y; Guo C
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31466365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductivity and Sintering Mechanism of Aluminum/Diamond Composites Prepared by DC-Assisted Fast Hot-Pressing Sintering.
    Jia J; Hei X; Yang X; Zhao W; Wang Y; Zhuo Q; Li Y; Dong H; Liu F; Li Y; Yan X
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase stability and microstructural properties of high entropy alloy reinforced aluminium matrix composites consolidated via spark plasma sintering.
    Salifu S; Olubambi PA; Teffo L
    Heliyon; 2024 Jan; 10(2):e24498. PubMed ID: 38298639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacturing of Aluminum Nano-Composites Reinforced with Nano-Copper and High Graphene Ratios Using Hot Pressing Technique.
    Yehia HM; Elmetwally RAH; Elhabak AM; El-Kady OA; Shash AY
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Al₂O₃-Cu Substrate with Co-Continuous Phases Made by Powder Sintering Process.
    Wang S; Lan H; Wang W; Liu G; Zhang D
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30127239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on In-Situ Synthesis Process of Ti-Al Intermetallic Compound-Reinforced Al Matrix Composites.
    Wan Q; Li F; Wang W; Hou J; Cui W; Li Y
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31248070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the Microstructure and Mechanical Properties of Diamond Particle-Reinforced Copper-Iron Sandwich Composites Prepared by Powder Metallurgy.
    Sun J; Jiang B; Li W; Cheng X; Liu H; Li Z
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epoxy-Based Copper (Cu) Sintering Pastes for Enhanced Bonding Strength and Preventing Cu Oxidation after Sintering.
    Han SJ; Lee S; Jang KS
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.