BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34361572)

  • 21. 3D feasibility of 2D RNA-RNA interaction paths by stepwise folding simulations.
    Beckmann IK; Waldl M; Will S; Hofacker IL
    RNA; 2024 Jan; 30(2):113-123. PubMed ID: 38071473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on folding diversity in statistical learning methods for RNA secondary structure prediction.
    Zhu Y; Xie Z; Li Y; Zhu M; Chen YP
    Int J Biol Sci; 2018; 14(8):872-882. PubMed ID: 29989089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
    Boniecki MJ; Lach G; Dawson WK; Tomala K; Lukasz P; Soltysinski T; Rother KM; Bujnicki JM
    Nucleic Acids Res; 2016 Apr; 44(7):e63. PubMed ID: 26687716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling RNA secondary structure folding ensembles using SHAPE mapping data.
    Spasic A; Assmann SM; Bevilacqua PC; Mathews DH
    Nucleic Acids Res; 2018 Jan; 46(1):314-323. PubMed ID: 29177466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. antaRNA--Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization.
    Kleinkauf R; Houwaart T; Backofen R; Mann M
    BMC Bioinformatics; 2015 Nov; 16():389. PubMed ID: 26581440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated prediction of three-way junction topological families in RNA secondary structures.
    Lamiable A; Barth D; Denise A; Quessette F; Vial S; Westhof E
    Comput Biol Chem; 2012 Apr; 37():1-5. PubMed ID: 22326420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in RNA folding.
    Fallmann J; Will S; Engelhardt J; GrĂ¼ning B; Backofen R; Stadler PF
    J Biotechnol; 2017 Nov; 261():97-104. PubMed ID: 28690134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rtools: a web server for various secondary structural analyses on single RNA sequences.
    Hamada M; Ono Y; Kiryu H; Sato K; Kato Y; Fukunaga T; Mori R; Asai K
    Nucleic Acids Res; 2016 Jul; 44(W1):W302-7. PubMed ID: 27131356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DrTransformer: heuristic cotranscriptional RNA folding using the nearest neighbor energy model.
    Badelt S; Lorenz R; Hofacker IL
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A New Method of RNA Secondary Structure Prediction Based on Convolutional Neural Network and Dynamic Programming.
    Zhang H; Zhang C; Li Z; Li C; Wei X; Zhang B; Liu Y
    Front Genet; 2019; 10():467. PubMed ID: 31191603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel and efficient RNA secondary structure prediction using hierarchical folding.
    Jabbari H; Condon A; Zhao S
    J Comput Biol; 2008 Mar; 15(2):139-63. PubMed ID: 18312147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free energy minimization to predict RNA secondary structures and computational RNA design.
    Churkin A; Weinbrand L; Barash D
    Methods Mol Biol; 2015; 1269():3-16. PubMed ID: 25577369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA design using simulated SHAPE data.
    Lotfi M; Zare-Mirakabad F; Montaseri S
    Genes Genet Syst; 2018 May; 92(6):257-265. PubMed ID: 28757510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crumple: An Efficient Tool to Explore Thoroughly the RNA Folding Landscape.
    Guerra I; Schroeder SJ
    Methods Mol Biol; 2016; 1490():1-14. PubMed ID: 27665589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Practicality and time complexity of a sparsified RNA folding algorithm.
    Dimitrieva S; Bucher P
    J Bioinform Comput Biol; 2012 Apr; 10(2):1241007. PubMed ID: 22809342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [An iterative method for prediction of RNA secondary structures including pseudoknots based on minimum of free energy and covariance].
    Wang ZX; Luo ZG; Guan NY; Yan FM; Jin X; Zhang W
    Yi Chuan; 2007 Jul; 29(7):889-97. PubMed ID: 17646157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting RNA-RNA Interactions Using RNAstructure.
    DiChiacchio L; Mathews DH
    Methods Mol Biol; 2016; 1490():51-62. PubMed ID: 27665592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Folding rate dependence on the chain length of RNA-like heteropolymers.
    Galzitskaya O; Finkelstein AV
    Fold Des; 1998; 3(2):69-78. PubMed ID: 9565751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design.
    Garcia-Martin JA; Clote P; Dotu I
    J Bioinform Comput Biol; 2013 Apr; 11(2):1350001. PubMed ID: 23600819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.