These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34361639)
1. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Shen C; Jin X; Glover WJ; He X Molecules; 2021 Jul; 26(15):. PubMed ID: 34361639 [TBL] [Abstract][Full Text] [Related]
2. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method. Jin X; Zhang JZ; He X J Phys Chem A; 2017 Mar; 121(12):2503-2514. PubMed ID: 28264557 [TBL] [Abstract][Full Text] [Related]
3. Fragment-based quantum mechanical calculation of protein-protein binding affinities. Wang Y; Liu J; Li J; He X J Comput Chem; 2018 Aug; 39(21):1617-1628. PubMed ID: 29707784 [TBL] [Abstract][Full Text] [Related]
4. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy. Wang X; Liu J; Zhang JZ; He X J Phys Chem A; 2013 Aug; 117(32):7149-61. PubMed ID: 23452268 [TBL] [Abstract][Full Text] [Related]
5. Theoretical Insights into the Mechanism of Wavelength Regulation in Blue-Absorbing Proteorhodopsin. Lee C; Sekharan S; Mertz B J Phys Chem B; 2019 Dec; 123(50):10631-10641. PubMed ID: 31757123 [TBL] [Abstract][Full Text] [Related]
6. An improved fragment-based quantum mechanical method for calculation of electrostatic solvation energy of proteins. Jia X; Wang X; Liu J; Zhang JZ; Mei Y; He X J Chem Phys; 2013 Dec; 139(21):214104. PubMed ID: 24320361 [TBL] [Abstract][Full Text] [Related]
7. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry. Church JR; Amoyal GS; Borin VA; Adam S; Olsen JMH; Schapiro I Chemistry; 2022 May; 28(28):e202200139. PubMed ID: 35307890 [TBL] [Abstract][Full Text] [Related]
8. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs. Shen C; Wang X; He X Front Chem; 2021; 9():801062. PubMed ID: 35004616 [TBL] [Abstract][Full Text] [Related]
9. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
10. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy. Wang Z; Han Y; Li J; He X J Phys Chem B; 2020 Apr; 124(15):3027-3035. PubMed ID: 32208716 [TBL] [Abstract][Full Text] [Related]
11. A quantum mechanical computational method for modeling electrostatic and solvation effects of protein. Wang X; Li Y; Gao Y; Yang Z; Lu C; Zhu T Sci Rep; 2018 Apr; 8(1):5475. PubMed ID: 29615707 [TBL] [Abstract][Full Text] [Related]
12. An Ab Initio QM/MM Study of the Electrostatic Contribution to Catalysis in the Active Site of Ketosteroid Isomerase. Wang X; He X Molecules; 2018 Sep; 23(10):. PubMed ID: 30241317 [TBL] [Abstract][Full Text] [Related]
13. Fragment Quantum Mechanical Method for Excited States of Proteins: Development and Application to the Green Fluorescent Protein. Jin X; Glover WJ; He X J Chem Theory Comput; 2020 Aug; 16(8):5174-5188. PubMed ID: 32551640 [TBL] [Abstract][Full Text] [Related]
14. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins. Liu J; Zhang JZ; He X Phys Chem Chem Phys; 2016 Jan; 18(3):1864-75. PubMed ID: 26686896 [TBL] [Abstract][Full Text] [Related]
15. Spectral tuning in visual pigments: an ONIOM(QM:MM) study on bovine rhodopsin and its mutants. Altun A; Yokoyama S; Morokuma K J Phys Chem B; 2008 Jun; 112(22):6814-27. PubMed ID: 18473437 [TBL] [Abstract][Full Text] [Related]
16. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids. Liu J; He X Phys Chem Chem Phys; 2020 Jun; 22(22):12341-12367. PubMed ID: 32459230 [TBL] [Abstract][Full Text] [Related]
17. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins. Liu J; Zhu T; Wang X; He X; Zhang JZ J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993 [TBL] [Abstract][Full Text] [Related]
18. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Ran T; Ozorowski G; Gao Y; Sineshchekov OA; Wang W; Spudich JL; Luecke H Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1965-80. PubMed ID: 24100316 [TBL] [Abstract][Full Text] [Related]
19. Low-temperature FTIR spectroscopy of the L/Q switch of proteorhodopsin. Nishikino T; Sugimoto T; Kandori H Phys Chem Chem Phys; 2024 Sep; 26(35):22959-22967. PubMed ID: 39171479 [TBL] [Abstract][Full Text] [Related]
20. A Quantum-mechanical Study of the Binding Pocket of Proteorhodopsin: Absorption and Vibrational Spectra Modulated by Analogue Chromophores. Buda F; Keijer T; Ganapathy S; de Grip WJ Photochem Photobiol; 2017 Nov; 93(6):1399-1406. PubMed ID: 28597944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]