BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34361769)

  • 1. Fabrication of Eutectic Ga-In Nanowire Arrays Based on Plateau-Rayleigh Instability.
    Ikuno T; Somei Z
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Wiring of Eutectic Gallium-Indium to a Metal Electrode for Soft Sensor Systems.
    Kim S; Oh J; Jeong D; Bae J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20557-20565. PubMed ID: 31066540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Surrounding Solvents on Interfacial Behavior of Gallium-Based Liquid Metal Droplets.
    Kim JH; Park YJ; Kim S; So JH; Koo HJ
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple and Cost-Effective Method for Producing Stable Surfactant-Coated EGaIn Liquid Metal Nanodroplets.
    Xu B; Ye F; Chang G; Li R
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32854305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a Flexible Photodetector Based on a Liquid Eutectic Gallium Indium.
    Xiao P; Gwak HJ; Seo S
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33218085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Low Cost and Low Temperature Poly-Silicon Nanowire Sensor Arrays for Monolithic Three-Dimensional Integrated Circuits Applications.
    Tang S; Yan J; Zhang J; Wei S; Zhang Q; Li J; Fang M; Zhang S; Xiong E; Wang Y; Yang J; Zhang Z; Wei Q; Yin H; Wang W; Tu H
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33322344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between Interfacial Energy, Contact Mechanics, and Capillary Forces in EGaIn Droplets.
    Amini S; Chen X; Chua JQI; Tee JS; Nijhuis CA; Miserez A
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28074-28084. PubMed ID: 35649179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography.
    Sun Z; Tzaguy A; Hazut O; Lauhon LJ; Yerushalmi R; Seidman DN
    Nano Lett; 2017 Dec; 17(12):7478-7486. PubMed ID: 29116798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of eutectic gallium-indium alloy nanostructure and application in photodetection.
    Wang PF; Hu Q; Lv B; Zhu JL; Ma W; Dong Z; Wei J; Sun JL
    Nanotechnology; 2020 Apr; 31(14):145703. PubMed ID: 31835264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming Rayleigh-Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation.
    Song M; Kartawira K; Hillaire KD; Li C; Eaker CB; Kiani A; Daniels KE; Dickey MD
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19026-19032. PubMed ID: 32727907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core-Shell Wires.
    Long L; Che X; Yao P; Zhang X; Wang J; Li M; Li C
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18690-18696. PubMed ID: 35420779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays.
    Oehler F; Cattoni A; Scaccabarozzi A; Patriarche G; Glas F; Harmand JC
    Nano Lett; 2018 Feb; 18(2):701-708. PubMed ID: 29257888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays.
    Azizur-Rahman KM; LaPierre RR
    Nanotechnology; 2015 Jul; 26(29):295202. PubMed ID: 26134509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous, Defect-Free Kinking via Capillary Instability during Vapor-Liquid-Solid Nanowire Growth.
    Li Y; Wang Y; Ryu S; Marshall AF; Cai W; McIntyre PC
    Nano Lett; 2016 Mar; 16(3):1713-8. PubMed ID: 26837774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale metal nanoelectrode arrays based on printed nanowire lithography for nanowire complementary inverters.
    Ko HS; Lee Y; Min SY; Kwon SJ; Lee TW
    Nanoscale; 2017 Oct; 9(41):15766-15772. PubMed ID: 29019493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities.
    Mohammed M; Sundaresan R; Dickey MD
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23163-71. PubMed ID: 26423030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolithically Programmed Stretchable Conductor by Laser-Induced Entanglement of Liquid Metal and Metallic Nanowire Backbone.
    Cho C; Shin W; Kim M; Bang J; Won P; Hong S; Ko SH
    Small; 2022 Sep; 18(37):e2202841. PubMed ID: 35901286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned growth of single-crystal 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanowire arrays for field-emission and optoelectronic devices.
    Pan H; Zhang X; Yang Y; Shao Z; Deng W; Ding K; Zhang Y; Jie J
    Nanotechnology; 2015 Jul; 26(29):295302. PubMed ID: 26135069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of dual-type nanowire arrays on a single substrate.
    Kakko JP; Haggrén T; Dhaka V; Huhtio T; Peltonen A; Jiang H; Kauppinen E; Lipsanen H
    Nano Lett; 2015 Mar; 15(3):1679-83. PubMed ID: 25654331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.