These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34361879)

  • 1. Biofilms for Turbidity Mitigation in Oil Sands End Pit Lakes.
    Cossey HL; Anwar MN; Kuznetsov PV; Ulrich AC
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study.
    Dompierre KA; Barbour SL
    J Contam Hydrol; 2016 Jun; 189():12-26. PubMed ID: 27061245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of carbonate mineral dissolution in turbidity reduction in an oil sands end pit lake.
    Poon HY; Cossey HL; Balaberda AL; Ulrich AC
    Chemosphere; 2021 May; 271():129876. PubMed ID: 33736208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake.
    Dompierre KA; Lindsay MB; Cruz-Hernández P; Halferdahl GM
    Sci Total Environ; 2016 Jun; 556():196-206. PubMed ID: 26974568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic Toxicity of Surface Water from a Canadian Oil Sands End Pit Lake to the Freshwater Invertebrates Chironomus dilutus and Ceriodaphnia dubia.
    White KB; Liber K
    Arch Environ Contam Toxicol; 2020 Apr; 78(3):439-450. PubMed ID: 32077988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ebullition enhances chemical mass transport across the tailings-water interface of oil sands pit lakes.
    Francis DJ; Barbour SL; Lindsay MBJ
    J Contam Hydrol; 2022 Feb; 245():103938. PubMed ID: 34915427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoplankton ecology in the early years of a boreal oil sands end pit lake.
    Furgason CC; Smirnova AV; Dacks JB; Dunfield PF
    Environ Microbiome; 2024 Jan; 19(1):3. PubMed ID: 38217061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds.
    Reid T; VanMensel D; Droppo IG; Weisener CG
    Water Res; 2016 Sep; 100():337-347. PubMed ID: 27214346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pressure on the biogeochemical and geotechnical behavior of treated oil sands tailings in a pit lake scenario.
    Cossey HL; Kaminsky HAW; Ulrich AC
    Chemosphere; 2024 Oct; 365():143395. PubMed ID: 39313078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early chemical and toxicological risk characterization of inorganic constituents in surface water from the Canadian oil sands first large-scale end pit lake.
    White KB; Liber K
    Chemosphere; 2018 Nov; 211():745-757. PubMed ID: 30099159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascading sulfur cycling in simulated oil sands pit lake water cap mesocosms transitioning from oxic to euxinic conditions.
    Yan Y; Twible LE; Liu FYL; Arrey JLS; Colenbrander Nelson TE; Warren LA
    Sci Total Environ; 2024 Nov; 950():175272. PubMed ID: 39111438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotopic and Chemical Assessment of the Dynamics of Methane Sources and Microbial Cycling during Early Development of an Oil Sands Pit Lake.
    Slater GF; Goad CA; Lindsay MBJ; Mumford KG; Colenbrander Nelson TE; Brady AL; Jessen GL; Warren LA
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model naphthenic acids removal by microalgae and Base Mine Lake cap water microbial inoculum.
    Yu X; Lee K; Ulrich AC
    Chemosphere; 2019 Nov; 234():796-805. PubMed ID: 31247489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indigenous microorganisms residing in oil sands tailings biodegrade residual bitumen.
    Yu X; Lee K; Ma B; Asiedu E; Ulrich AC
    Chemosphere; 2018 Oct; 209():551-559. PubMed ID: 29945048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomer-specific monitoring of naphthenic acids at an oil sands pit lake by comprehensive two-dimensional gas chromatography-mass spectrometry.
    Bowman DT; Warren LA; Slater GF
    Sci Total Environ; 2020 Dec; 746():140985. PubMed ID: 32739755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal variations in turbidity in an oil sands pit lake.
    Tedford E; Halferdahl G; Pieters R; Lawrence GA
    Environ Fluid Mech (Dordr); 2019; 19(2):457-473. PubMed ID: 31148952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alum Addition Triggers Hypoxia in an Engineered Pit Lake.
    Jessen GL; Chen LX; Mori JF; Nelson TEC; Slater GF; Lindsay MBJ; Banfield JF; Warren LA
    Microorganisms; 2022 Feb; 10(3):. PubMed ID: 35336086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic Estimation of Community Composition and Novel Eukaryotic Lineages in Base Mine Lake: An Oil Sands Tailings Reclamation Site in Northern Alberta.
    Richardson E; Bass D; Smirnova A; Paoli L; Dunfield P; Dacks JB
    J Eukaryot Microbiol; 2020 Jan; 67(1):86-99. PubMed ID: 31432582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chemical fractions from an oil sands end-pit lake on reproduction of fathead minnows.
    Morandi G; Wiseman S; Sun C; Martin JW; Giesy JP
    Chemosphere; 2020 Jun; 249():126073. PubMed ID: 32088464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings.
    Kong JD; Wang H; Siddique T; Foght J; Semple K; Burkus Z; Lewis MA
    Sci Total Environ; 2019 Dec; 694():133645. PubMed ID: 31400693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.