These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34362917)

  • 1. A subduction influence on ocean ridge basalts outside the Pacific subduction shield.
    Yang AY; Langmuir CH; Cai Y; Michael P; Goldstein SL; Chen Z
    Nat Commun; 2021 Aug; 12(1):4757. PubMed ID: 34362917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean.
    Richter M; Nebel O; Maas R; Mather B; Nebel-Jacobsen Y; Capitanio FA; Dick HJB; Cawood PA
    Sci Adv; 2020 Oct; 6(44):. PubMed ID: 33127673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt.
    Dixon JE; Leist L; Langmuir C; Schilling JG
    Nature; 2002 Nov; 420(6914):385-9. PubMed ID: 12459776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction.
    Gianni GM; Likerman J; Navarrete CR; Gianni CR; Zlotnik S
    Nat Commun; 2023 Apr; 14(1):2083. PubMed ID: 37045842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of a 'Southern Hemisphere' geochemical signature in the Arctic upper mantle.
    Goldstein SL; Soffer G; Langmuir CH; Lehnert KA; Graham DW; Michael PJ
    Nature; 2008 May; 453(7191):89-93. PubMed ID: 18451860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.
    Elliott T; Thomas A; Jeffcoate A; Niu Y
    Nature; 2006 Oct; 443(7111):565-8. PubMed ID: 17024091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A correlation between mid-ocean-ridge basalt chemistry and distance to continents.
    Humler E; Besse J
    Nature; 2002 Oct; 419(6907):607-9. PubMed ID: 12374976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean.
    Liu CZ; Snow JE; Hellebrand E; Brügmann G; von der Handt A; Büchl A; Hofmann AW
    Nature; 2008 Mar; 452(7185):311-6. PubMed ID: 18354475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source.
    Cottrell E; Kelley KA
    Science; 2013 Jun; 340(6138):1314-7. PubMed ID: 23641060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts.
    Escrig S; Capmas F; Dupré B; Allègre CJ
    Nature; 2004 Sep; 431(7004):59-63. PubMed ID: 15343331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge.
    Hanan BB; Blichert-Toft J; Pyle DG; Christie DM
    Nature; 2004 Nov; 432(7013):91-4. PubMed ID: 15525986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development.
    Li H; Arculus RJ; Ishizuka O; Hickey-Vargas R; Yogodzinski GM; McCarthy A; Kusano Y; Brandl PA; Savov IP; Tepley FJ; Sun W
    Nat Commun; 2021 Mar; 12(1):1723. PubMed ID: 33741949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes.
    Zhong Y; Zhang GL; Jin QZ; Huang F; Wang XJ; Xie LW
    Sci Bull (Beijing); 2021 Apr; 66(7):740-748. PubMed ID: 36654448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magmatic Response to Subduction Initiation: Part 1. Fore-arc Basalts of the Izu-Bonin Arc From IODP Expedition 352.
    Shervais JW; Reagan M; Haugen E; Almeev RR; Pearce JA; Prytulak J; Ryan JG; Whattam SA; Godard M; Chapman T; Li H; Kurz W; Nelson WR; Heaton D; Kirchenbaur M; Shimizu K; Sakuyama T; Li Y; Vetter SK
    Geochem Geophys Geosyst; 2019 Jan; 20(1):314-338. PubMed ID: 30853858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slab melting boosts the mantle wedge contribution to Li-rich magmas.
    Schettino E; González-Pérez I; Marchesi C; González-Jiménez JM; Grégoire M; Tilhac R; Gervilla F; Blanco-Quintero IF; Corgne A; Schilling ME
    Sci Rep; 2024 Jul; 14(1):15168. PubMed ID: 38956121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barium isotope evidence for pervasive sediment recycling in the upper mantle.
    Nielsen SG; Horner TJ; Pryer HV; Blusztajn J; Shu Y; Kurz MD; Le Roux V
    Sci Adv; 2018 Jul; 4(7):eaas8675. PubMed ID: 30009259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of Archean upper mantle caused by crustal recycling.
    Gao L; Liu S; Cawood PA; Hu F; Wang J; Sun G; Hu Y
    Nat Commun; 2022 Jun; 13(1):3283. PubMed ID: 35672309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The redox state of arc mantle using Zn/Fe systematics.
    Lee CT; Luffi P; Le Roux V; Dasgupta R; Albaréde F; Leeman WP
    Nature; 2010 Dec; 468(7324):681-5. PubMed ID: 21124454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing effects of spreading rate, crystal fractionation and source variability on Fe isotope systematics in mid-ocean ridge lavas.
    Richter M; Nebel O; Schwindinger M; Nebel-Jacobsen Y; Dick HJB
    Sci Rep; 2021 Feb; 11(1):4123. PubMed ID: 33603040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.
    Timm C; Bassett D; Graham IJ; Leybourne MI; de Ronde CE; Woodhead J; Layton-Matthews D; Watts AB
    Nat Commun; 2013; 4():1720. PubMed ID: 23591887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.