These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34362955)

  • 1. The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection: a virtual study.
    Abazari MA; Rafiei D; Soltani M; Alimohammadi M
    Sci Rep; 2021 Aug; 11(1):16058. PubMed ID: 34362955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional modelling and hemodynamic simulation of the closure of multiple entry tears in type B aortic dissection.
    Liu H; Zhao G; Zhang GE; Xiong F; Hu S; Ouyang Y; Xiong F
    Med Phys; 2024 Jan; 51(1):42-53. PubMed ID: 38038366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection.
    Cheng Z; Riga C; Chan J; Hamady M; Wood NB; Cheshire NJ; Xu Y; Gibbs RG
    J Vasc Surg; 2013 Feb; 57(2 Suppl):35S-43S. PubMed ID: 23336853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method for scaling inlet flow waveform in hemodynamic analysis of aortic dissection.
    Wang K; Armour CH; Guo B; Dong Z; Xu XY
    Int J Numer Method Biomed Eng; 2024 Sep; 40(9):e3855. PubMed ID: 39051141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer flow modulator enhances vital organ perfusion in patients with type B aortic dissection.
    Rikhtegar Nezami F; Athanasiou LS; Amrute JM; Edelman ER
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1182-H1193. PubMed ID: 30095992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Study of Anatomical Risk Factors in Idealized Models of Type B Aortic Dissection.
    Ben Ahmed S; Dillon-Murphy D; Figueroa CA
    Eur J Vasc Endovasc Surg; 2016 Dec; 52(6):736-745. PubMed ID: 27561609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.
    Tse KM; Chiu P; Lee HP; Ho P
    J Biomech; 2011 Mar; 44(5):827-36. PubMed ID: 21256491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-modality image-based computational analysis of haemodynamics in aortic dissection.
    Dillon-Murphy D; Noorani A; Nordsletten D; Figueroa CA
    Biomech Model Mechanobiol; 2016 Aug; 15(4):857-76. PubMed ID: 26416312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements.
    Cheng Z; Juli C; Wood NB; Gibbs RG; Xu XY
    Med Eng Phys; 2014 Sep; 36(9):1176-84. PubMed ID: 25070022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection.
    Qiao Y; Zeng Y; Ding Y; Fan J; Luo K; Zhu T
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):620-630. PubMed ID: 30822150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations into the Potential of Using Open Source CFD to Analyze the Differences in Hemodynamic Parameters for Aortic Dissections (Healthy versus Stanford Type A and B).
    Takeda R; Sato F; Yokoyama H; Sasaki K; Oshima N; Kuroda A; Takashima H; Li C; Honda S; Kamiya H
    Ann Vasc Surg; 2022 Feb; 79():310-323. PubMed ID: 34648855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Potential of Computational Fluid Dynamics Simulation on Serial Monitoring of Hemodynamic Change in Type B Aortic Dissection.
    Yu SC; Liu W; Wong RH; Underwood M; Wang D
    Cardiovasc Intervent Radiol; 2016 Aug; 39(8):1090-8. PubMed ID: 27169665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated Wall Shear Stress in Aortic Type B Dissection May Relate to Retrograde Aortic Type A Dissection: A Computational Fluid Dynamics Pilot Study.
    Osswald A; Karmonik C; Anderson JR; Rengier F; Karck M; Engelke J; Kallenbach K; Kotelis D; Partovi S; Böckler D; Ruhparwar A
    Eur J Vasc Endovasc Surg; 2017 Sep; 54(3):324-330. PubMed ID: 28716447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific Computational Hemodynamic Analysis for Interrupted Aortic Arch in an Adult: Implications for Aortic Dissection Initiation.
    Peng L; Qiu Y; Yang Z; Yuan D; Dai C; Li D; Jiang Y; Zheng T
    Sci Rep; 2019 Jun; 9(1):8600. PubMed ID: 31197221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Planning and Patient-Specific Graft Design for Aortic Repairs.
    Aslan S; Liu X; Wu Q; Mass P; Loke YH; Johnson J; Huddle J; Olivieri L; Hibino N; Krieger A
    Cardiovasc Eng Technol; 2024 Apr; 15(2):123-136. PubMed ID: 37985613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid-structure interaction simulations of patient-specific aortic dissection.
    Bäumler K; Vedula V; Sailer AM; Seo J; Chiu P; Mistelbauer G; Chan FP; Fischbein MP; Marsden AL; Fleischmann D
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1607-1628. PubMed ID: 31993829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamics and wall shear metrics in a pulmonary autograft: Comparing a fluid-structure interaction and computational fluid dynamics approach.
    Balasubramanya A; Maes L; Rega F; Mazzi V; Morbiducci U; Famaey N; Degroote J; Segers P
    Comput Biol Med; 2024 Jun; 176():108604. PubMed ID: 38761502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of Post-TAVR Hemodynamics to the Distal Aortic Arch Anatomy: A High-Fidelity CFD Study.
    Natarajan T; Singh-Gryzbon S; Chen H; Sadri V; Ruile P; Neumann FJ; Yoganathan AP; Dasi LP
    Cardiovasc Eng Technol; 2024 Aug; 15(4):463-480. PubMed ID: 38653932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.