These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34362965)

  • 1. Suppression of top-down influence decreases neuronal excitability and contrast sensitivity in the V1 cortex of cat.
    Ding J; Hu X; Xu F; Yu H; Ye Z; Zhang S; Pan H; Pan D; Tu Y; Zhang Q; Sun Q; Hua T
    Sci Rep; 2021 Aug; 11(1):16034. PubMed ID: 34362965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of top-down influence decreases both behavioral and V1 neuronal response sensitivity to stimulus orientations in cats.
    Ye Z; Ding J; Tu Y; Zhang Q; Chen S; Yu H; Sun Q; Hua T
    Front Behav Neurosci; 2023; 17():1061980. PubMed ID: 36844652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of top-down influence affects trafficking of glutamatergic receptors in the primary visual cortex.
    Zhang S; Ding J; Tu Y; Zhang Q; Ye Z; Yu H; Sun Q; Hua T
    Biochem Biophys Res Commun; 2022 Dec; 632():17-23. PubMed ID: 36191373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top-down influence affects the response adaptation of V1 neurons in cats.
    Pan D; Pan H; Zhang S; Yu H; Ding J; Ye Z; Hua T
    Brain Res Bull; 2021 Feb; 167():89-98. PubMed ID: 33333174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down influence of areas 21a and 7 differently affects the surround suppression of V1 neurons in cats.
    Yu H; Chen S; Ye Z; Zhang Q; Tu Y; Hua T
    Cereb Cortex; 2023 Nov; 33(22):11047-11059. PubMed ID: 37724432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of top-down influence suppression on behavioral and V1 neuronal contrast sensitivity functions in cats.
    Ding J; Ye Z; Xu F; Hu X; Yu H; Zhang S; Tu Y; Zhang Q; Sun Q; Hua T; Lu ZL
    iScience; 2022 Jan; 25(1):103683. PubMed ID: 35059603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats.
    Zhao X; Ding J; Pan H; Zhang S; Pan D; Yu H; Ye Z; Hua T
    J Physiol; 2020 Sep; 598(17):3727-3745. PubMed ID: 32506434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex.
    Costa TL; Hamer RD; Nagy BV; Barboni MT; Gualtieri M; Boggio PS; Ventura DF
    Exp Brain Res; 2015 Apr; 233(4):1213-23. PubMed ID: 25600818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia.
    Ding Z; Li J; Spiegel DP; Chen Z; Chan L; Luo G; Yuan J; Deng D; Yu M; Thompson B
    Sci Rep; 2016 Jan; 6():19280. PubMed ID: 26763954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relationship between cortical excitability and visual oscillatory responses - A concurrent tDCS-MEG study.
    Marshall TR; Esterer S; Herring JD; Bergmann TO; Jensen O
    Neuroimage; 2016 Oct; 140():41-9. PubMed ID: 26455793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial Direct Current Stimulation Effects on Single and Paired Flash Visual Evoked Potentials.
    Strigaro G; Mayer I; Chen JC; Cantello R; Rothwell JC
    Clin EEG Neurosci; 2015 Jul; 46(3):208-13. PubMed ID: 25253432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial alternating current stimulation of α but not β frequency sharpens multiple visual functions.
    Nakazono H; Ogata K; Takeda A; Yamada E; Kimura T; Tobimatsu S
    Brain Stimul; 2020; 13(2):343-352. PubMed ID: 31711878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence.
    Antal A; Kincses TZ; Nitsche MA; Bartfai O; Paulus W
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):702-7. PubMed ID: 14744917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures.
    Arshad Q; Siddiqui S; Ramachandran S; Goga U; Bonsu A; Patel M; Roberts RE; Nigmatullina Y; Malhotra P; Bronstein AM
    Neuroscience; 2015 Dec; 311():484-9. PubMed ID: 26518461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
    Crowder NA; Price NS; Hietanen MA; Dreher B; Clifford CW; Ibbotson MR
    J Neurophysiol; 2006 Jan; 95(1):271-83. PubMed ID: 16192327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural correlates of stimulus spatial frequency-dependent contrast detection.
    Meng J; Liu R; Wang K; Hua T; Lu ZL; Xi M
    Exp Brain Res; 2013 Mar; 225(3):377-85. PubMed ID: 23314692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function.
    Wu D; Zhou Y; Lv H; Liu N; Zhang P
    Neuropsychologia; 2021 Jun; 156():107854. PubMed ID: 33823163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrast modulated steady-state visual evoked potentials (CMSS VEPs): recording evoked potentials and related single cell responses in area 17 of the cat.
    Spileers W; Maes H; Lagae L; Orban GA
    Electroencephalogr Clin Neurophysiol; 1994 Jan; 92(1):64-77. PubMed ID: 7508854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcranial direct current stimulation and visual perception.
    Antal A; Paulus W
    Perception; 2008; 37(3):367-74. PubMed ID: 18491714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for metaplasticity in the human visual cortex.
    Bocci T; Caleo M; Tognazzi S; Francini N; Briscese L; Maffei L; Rossi S; Priori A; Sartucci F
    J Neural Transm (Vienna); 2014; 121(3):221-31. PubMed ID: 24162796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.