BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1117 related articles for article (PubMed ID: 34362974)

  • 1. Effect of saliva fluid properties on pathogen transmissibility.
    Reyes J; Fontes D; Bazzi A; Otero M; Ahmed K; Kinzel M
    Sci Rep; 2021 Aug; 11(1):16051. PubMed ID: 34362974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Microbial Risk Assessment for Airborne Transmission of SARS-CoV-2 via Breathing, Speaking, Singing, Coughing, and Sneezing.
    Schijven J; Vermeulen LC; Swart A; Meijer A; Duizer E; de Roda Husman AM
    Environ Health Perspect; 2021 Apr; 129(4):47002. PubMed ID: 33793301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airborne transmission of SARS-CoV-2 is the dominant route of transmission: droplets and aerosols.
    Rabaan AA; Al-Ahmed SH; Al-Malkey M; Alsubki R; Ezzikouri S; Al-Hababi FH; Sah R; Al Mutair A; Alhumaid S; Al-Tawfiq JA; Al-Omari A; Al-Qaaneh AM; Al-Qahtani M; Tirupathi R; Al Hamad MA; Al-Baghli NA; Sulaiman T; Alsubait A; Mehta R; Abass E; Alawi M; Alshahrani F; Shrestha DB; Karobari MI; Pecho-Silva S; Arteaga-Livias K; Bonilla-Aldana DK; Rodriguez-Morales AJ
    Infez Med; 2021 Mar; 29(1):10-19. PubMed ID: 33664169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiology to Disease Transmission of Respiratory Tract Infection: A Narrative Review.
    Singh NK; Kumar N; Singh AK
    Infect Disord Drug Targets; 2021; 21(6):e170721188930. PubMed ID: 33297921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition from saliva droplets to solid aerosols in the context of COVID-19 spreading.
    Stiti M; Castanet G; Corber A; Alden M; Berrocal E
    Environ Res; 2022 Mar; 204(Pt B):112072. PubMed ID: 34562485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze.
    Fontes D; Reyes J; Ahmed K; Kinzel M
    Phys Fluids (1994); 2020 Nov; 32(11):111904. PubMed ID: 33244214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission risk of viruses in large mucosalivary droplets on the surface of objects: A time-based analysis.
    Guo L; Wang M; Zhang L; Mao N; An C; Xu L; Long E
    Infect Dis Now; 2021 May; 51(3):219-227. PubMed ID: 33934808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peering inside a cough or sneeze to explain enhanced airborne transmission under dry weather.
    Liu K; Allahyari M; Salinas JS; Zgheib N; Balachandar S
    Sci Rep; 2021 May; 11(1):9826. PubMed ID: 33972590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2.
    Ueki H; Furusawa Y; Iwatsuki-Horimoto K; Imai M; Kabata H; Nishimura H; Kawaoka Y
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33087517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics of virus transmission by speaking droplets.
    Netz RR; Eaton WA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25209-25211. PubMed ID: 32973098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physicist's approach to COVID-19 transmission via expiratory droplets.
    Carelli P
    Med Hypotheses; 2020 Nov; 144():109997. PubMed ID: 32758864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission.
    Stadnytskyi V; Bax CE; Bax A; Anfinrud P
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11875-11877. PubMed ID: 32404416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformative Approach To Investigate the Microphysical Factors Influencing Airborne Transmission of Pathogens.
    Otero Fernandez M; Thomas RJ; Oswin H; Haddrell AE; Reid JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental characterization of speech aerosol dispersion dynamics.
    Tan ZP; Silwal L; Bhatt SP; Raghav V
    Sci Rep; 2021 Feb; 11(1):3953. PubMed ID: 33597564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling.
    Bahramian A; Mohammadi M; Ahmadi G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging.
    Mueller SK; Veltrup R; Jakubaß B; Kniesburges S; Huebner MJ; Kempfle JS; Dittrich S; Iro H; Döllinger M
    Sci Rep; 2021 May; 11(1):10627. PubMed ID: 34017030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in human saliva viscoelasticity affect aerosolization propensity.
    Rodríguez-Hakim M; Räz L; Vermant J
    Soft Matter; 2022 Mar; 18(13):2528-2540. PubMed ID: 35113119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering.
    Anfinrud P; Stadnytskyi V; Bax CE; Bax A
    N Engl J Med; 2020 May; 382(21):2061-2063. PubMed ID: 32294341
    [No Abstract]   [Full Text] [Related]  

  • 19. Propagation of viral bioaerosols indoors.
    Kudryashova OB; Muravlev EV; Antonnikova AA; Titov SS
    PLoS One; 2021; 16(1):e0244983. PubMed ID: 33400714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking.
    Wang Y; Xu G; Huang YW
    PLoS One; 2020; 15(10):e0241539. PubMed ID: 33125421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.