These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34363089)
1. Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer. Han S; Oh JS; Lee JJ Eur J Nucl Med Mol Imaging; 2022 Jan; 49(2):585-595. PubMed ID: 34363089 [TBL] [Abstract][Full Text] [Related]
2. Performance of deep learning models for response evaluation on whole-body bone scans in prostate cancer. Han S; Oh JS; Seo SY; Lee JJ Ann Nucl Med; 2023 Dec; 37(12):685-694. PubMed ID: 37819584 [TBL] [Abstract][Full Text] [Related]
3. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. Papandrianos N; Papageorgiou E; Anagnostis A; Papageorgiou K PLoS One; 2020; 15(8):e0237213. PubMed ID: 32797099 [TBL] [Abstract][Full Text] [Related]
4. Deep learning detection of prostate cancer recurrence with Lee JJ; Yang H; Franc BL; Iagaru A; Davidzon GA Eur J Nucl Med Mol Imaging; 2020 Dec; 47(13):2992-2997. PubMed ID: 32556481 [TBL] [Abstract][Full Text] [Related]
5. More advantages in detecting bone and soft tissue metastases from prostate cancer using Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003 [TBL] [Abstract][Full Text] [Related]
6. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
7. Development of Convolutional Neural Networks to identify bone metastasis for prostate cancer patients in bone scintigraphy. Papandrianos N; Papageorgiou EI; Anagnostis A Ann Nucl Med; 2020 Nov; 34(11):824-832. PubMed ID: 32839920 [TBL] [Abstract][Full Text] [Related]
8. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis. Ogata Y; Nakahara T; Ode K; Matsusaka Y; Katagiri M; Iwabuchi Y; Itoh K; Ichimura A; Jinzaki M Ann Nucl Med; 2017 May; 31(4):304-314. PubMed ID: 28243844 [TBL] [Abstract][Full Text] [Related]
9. Whole-body MRI: a powerful alternative to bone scan for bone marrow staging without radiation and gadolinium enhancer. Papageorgiou I; Dvorak J; Cosma I; Pfeil A; Teichgraeber U; Malich A Clin Transl Oncol; 2020 Aug; 22(8):1321-1328. PubMed ID: 31858434 [TBL] [Abstract][Full Text] [Related]
10. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network. Aldoj N; Lukas S; Dewey M; Penzkofer T Eur Radiol; 2020 Feb; 30(2):1243-1253. PubMed ID: 31468158 [TBL] [Abstract][Full Text] [Related]
11. Artificial intelligence-based analysis of whole-body bone scintigraphy: The quest for the optimal deep learning algorithm and comparison with human observer performance. Hajianfar G; Sabouri M; Salimi Y; Amini M; Bagheri S; Jenabi E; Hekmat S; Maghsudi M; Mansouri Z; Khateri M; Hosein Jamshidi M; Jafari E; Bitarafan Rajabi A; Assadi M; Oveisi M; Shiri I; Zaidi H Z Med Phys; 2024 May; 34(2):242-257. PubMed ID: 36932023 [TBL] [Abstract][Full Text] [Related]
12. Investigation of computer-aided diagnosis system for bone scans: a retrospective analysis in 406 patients. Tokuda O; Harada Y; Ohishi Y; Matsunaga N; Edenbrandt L Ann Nucl Med; 2014 May; 28(4):329-39. PubMed ID: 24573796 [TBL] [Abstract][Full Text] [Related]
13. Whole-body MRI-based multivariate prediction model in the assessment of bone metastasis in prostate cancer. Chen R; Yang Q; Chen W; Yang Y; Cheng C; Sun Y; Lu J World J Urol; 2021 Aug; 39(8):2937-2943. PubMed ID: 33521882 [TBL] [Abstract][Full Text] [Related]
14. Deep learning model using planar whole-body bone scintigraphy for diagnosis of skull base invasion in patients with nasopharyngeal carcinoma. Mu X; Ge Z; Lu D; Li T; Liu L; Chen C; Song S; Fu W; Jin G J Cancer Res Clin Oncol; 2024 Oct; 150(10):449. PubMed ID: 39379746 [TBL] [Abstract][Full Text] [Related]
15. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry. Monchka BA; Kimelman D; Lix LM; Leslie WD Bone; 2021 Sep; 150():116017. PubMed ID: 34020078 [TBL] [Abstract][Full Text] [Related]
18. Denoising of Scintillation Camera Images Using a Deep Convolutional Neural Network: A Monte Carlo Simulation Approach. Minarik D; Enqvist O; Trägårdh E J Nucl Med; 2020 Feb; 61(2):298-303. PubMed ID: 31324711 [TBL] [Abstract][Full Text] [Related]
19. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation. Liu KL; Wu T; Chen PT; Tsai YM; Roth H; Wu MS; Liao WC; Wang W Lancet Digit Health; 2020 Jun; 2(6):e303-e313. PubMed ID: 33328124 [TBL] [Abstract][Full Text] [Related]
20. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Pasoglou V; Michoux N; Peeters F; Larbi A; Tombal B; Selleslagh T; Omoumi P; Vande Berg BC; Lecouvet FE Radiology; 2015 Apr; 275(1):155-66. PubMed ID: 25513855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]