These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34363251)

  • 1. Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles.
    Chandra A; Prasad S; Iuele H; Colella F; Rizzo R; D'Amone E; Gigli G; Del Mercato LL
    Chemistry; 2021 Sep; 27(53):13279. PubMed ID: 34363251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles.
    Chandra A; Prasad S; Iuele H; Colella F; Rizzo R; D'Amone E; Gigli G; Del Mercato LL
    Chemistry; 2021 Sep; 27(53):13318-13324. PubMed ID: 34231936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyranine-Modified Amphiphilic Polymer Conetworks as Fluorescent Ratiometric pH Sensors.
    Ulrich S; Osypova A; Panzarasa G; Rossi RM; Bruns N; Boesel LF
    Macromol Rapid Commun; 2019 Nov; 40(21):e1900360. PubMed ID: 31523877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) and pH-sensitive microelectrodes in snail neurones.
    Willoughby D; Thomas RC; Schwiening CJ
    Pflugers Arch; 1998 Jul; 436(4):615-22. PubMed ID: 9683736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dual Use of the Pyranine (HPTS) Fluorescent Probe: A Ground-State pH Indicator and an Excited-State Proton Transfer Probe.
    Nandi R; Amdursky N
    Acc Chem Res; 2022 Sep; 55(18):2728-2739. PubMed ID: 36053265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay.
    Daleke DL; Hong K; Papahadjopoulos D
    Biochim Biophys Acta; 1990 May; 1024(2):352-66. PubMed ID: 2162207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of intracellular pH of BALB/c-3T3 cells using the fluorescence of pyranine.
    Giuliano KA; Gillies RJ
    Anal Biochem; 1987 Dec; 167(2):362-71. PubMed ID: 2831755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F; Tang L; Dai L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loading pyranine via purinergic receptors or hypotonic stress for measurement of cytosolic pH by imaging.
    Gan BS; Krump E; Shrode LD; Grinstein S
    Am J Physiol; 1998 Oct; 275(4):C1158-66. PubMed ID: 9755070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles.
    Clement NR; Gould JM
    Biochemistry; 1981 Mar; 20(6):1534-8. PubMed ID: 6261798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of dual dye-doped silica nanotube as a fluorescent ratiometric pH sensor.
    Nguyen PD; Nguyen DT; Son SJ; Min J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8719-23. PubMed ID: 25958591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(L-Lysine)-pyranine-3 coacervate mediated nanoparticle-assembly: fabrication of dynamic pH-responsive containers.
    Amali AJ; Singh S; Rangaraj N; Patra D; Rana RK
    Chem Commun (Camb); 2012 Jan; 48(6):856-8. PubMed ID: 22124198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-concentrated organically modified silica nanoparticles as a ratiometric fluorescent pH probe by one- and two-photon excitation.
    Kim S; Pudavar HE; Prasad PN
    Chem Commun (Camb); 2006 May; (19):2071-3. PubMed ID: 16767279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-precision ratiometric fluorosensor for pH: implementing time-dependent non-linear calibration protocols for drift compensation.
    Hakonen A; Hulth S
    Anal Chim Acta; 2008 Jan; 606(1):63-71. PubMed ID: 18068772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fluorescent indicator pyranine is suitable for measuring stromal and cameral pH in vivo.
    Thomas JV; Brimijoin MR; Neault TR; Brubaker RF
    Exp Eye Res; 1990 Mar; 50(3):241-9. PubMed ID: 2156724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application.
    Kermis HR; Kostov Y; Harms P; Rao G
    Biotechnol Prog; 2002; 18(5):1047-53. PubMed ID: 12363356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica.
    Aguedo M; Waché Y; Belin JM
    FEMS Microbiol Lett; 2001 Jun; 200(2):185-9. PubMed ID: 11425473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH determination by pyranine: medium-related artifacts and their correction.
    Avnir Y; Barenholz Y
    Anal Biochem; 2005 Dec; 347(1):34-41. PubMed ID: 16289011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocytosis and intracellular fate of liposomes using pyranine as a probe.
    Straubinger RM; Papahadjopoulos D; Hong KL
    Biochemistry; 1990 May; 29(20):4929-39. PubMed ID: 2163672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro sensing of Cu(+) through a green fluorescence rise of pyranine.
    Saha T; Sengupta A; Hazra P; Talukdar P
    Photochem Photobiol Sci; 2014 Oct; 13(10):1427-33. PubMed ID: 25057967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.