These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34363320)

  • 1. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications.
    Li C; Yan S; Fang J
    Small; 2021 Nov; 17(46):e2102244. PubMed ID: 34363320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals.
    Porter NS; Wu H; Quan Z; Fang J
    Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis.
    Shao Q; Wang P; Zhu T; Huang X
    Acc Chem Res; 2019 Dec; 52(12):3384-3396. PubMed ID: 31397995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain Engineering for Electrocatalytic Overall Water Splitting.
    Guo W; Chai DF; Li J; Yang X; Fu S; Sui G; Zhuang Y; Guo D
    Chempluschem; 2024 Jul; 89(7):e202300605. PubMed ID: 38459914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Dealloying-Assisted Surface-Engineered Pd-Based Bifunctional Electrocatalyst for Formic Acid Oxidation and Oxygen Reduction.
    Mondal S; Raj CR
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14110-14119. PubMed ID: 30912919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications.
    Wang D; Li Y
    Adv Mater; 2011 Mar; 23(9):1044-60. PubMed ID: 21218429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis.
    Yoo JM; Shin H; Chung DY; Sung YE
    Acc Chem Res; 2022 May; 55(9):1278-1289. PubMed ID: 35436084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals.
    Gamler JTL; Leonardi A; Sang X; Koczkur KM; Unocic RR; Engel M; Skrabalak SE
    Nanoscale Adv; 2020 Mar; 2(3):1105-1114. PubMed ID: 36133036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches.
    Gu J; Zhang YW; Tao FF
    Chem Soc Rev; 2012 Dec; 41(24):8050-65. PubMed ID: 23080555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property.
    Liu HL; Nosheen F; Wang X
    Chem Soc Rev; 2015 May; 44(10):3056-78. PubMed ID: 25793455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction.
    Choi SI; Lee SU; Kim WY; Choi R; Hong K; Nam KM; Han SW; Park JT
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6228-34. PubMed ID: 23106417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the Catalytic Mechanism of Bimetallic Platinum-Copper Core-Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions.
    Ma L; Luo X; Kropf AJ; Wen J; Wang X; Lee S; Myers DJ; Miller D; Wu T; Lu J; Amine K
    Nano Lett; 2016 Jan; 16(1):781-5. PubMed ID: 26709945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities.
    Zhang L; Yu S; Zhang J; Gong J
    Chem Sci; 2016 Jun; 7(6):3500-3505. PubMed ID: 29997842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostructures and Their Application in Catalysis.
    Bhol P; Bhavya MB; Swain S; Saxena M; Samal AK
    Front Chem; 2020; 8():357. PubMed ID: 32528924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties.
    Wu J; Li P; Pan YT; Warren S; Yin X; Yang H
    Chem Soc Rev; 2012 Dec; 41(24):8066-74. PubMed ID: 23104135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.
    Zhang Z; Wang Y; Wang X
    Nanoscale; 2011 Apr; 3(4):1663-74. PubMed ID: 21311802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.