BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34363623)

  • 1. Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum.
    Reyes-Pinto R; Ferrán JL; Vega-Zuniga T; González-Cabrera C; Luksch H; Mpodozis J; Puelles L; Marín GJ
    J Comp Neurol; 2022 Feb; 530(2):553-573. PubMed ID: 34363623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The isthmic nuclei providing parallel feedback connections to the avian tectum have different neurochemical identities: Expression of glutamatergic and cholinergic markers in the chick (Gallus gallus).
    González-Cabrera C; Garrido-Charad F; Roth A; Marín GJ
    J Comp Neurol; 2015 Jun; 523(9):1341-58. PubMed ID: 25594665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels.
    Wang Y; Luksch H; Brecha NC; Karten HJ
    J Comp Neurol; 2006 Jan; 494(1):7-35. PubMed ID: 16304683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The axon arbourisation of nuclei isthmi neurons in the optic tectum of the chick and pigeon. A Golgi and anterograde tracer-study.
    Tömböl T; Eyre MD; Alpár A; Németh A
    Anat Embryol (Berl); 2005 Jun; 209(5):371-80. PubMed ID: 15864640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axon terminals from the nucleus isthmi pars parvocellularis control the ascending retinotectofugal output through direct synaptic contact with tectal ganglion cell dendrites.
    González-Cabrera C; Garrido-Charad F; Mpodozis J; Bolam JP; Marín GJ
    J Comp Neurol; 2016 Feb; 524(2):362-79. PubMed ID: 26224333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution, laminar location, and morphology of tectal neurons projecting to the isthmo-optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): a retrograde labelling study.
    Woodson W; Reiner A; Anderson K; Karten HJ
    J Comp Neurol; 1991 Mar; 305(3):470-88. PubMed ID: 1709956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology, projection pattern, and neurochemical identity of Cajal's "centrifugal neurons": the cells of origin of the tectoventrogeniculate pathway in pigeon (Columba livia) and chicken (Gallus gallus).
    Vega-Zuniga T; Mpodozis J; Karten HJ; Marín G; Hain S; Luksch H
    J Comp Neurol; 2014 Jul; 522(10):2377-96. PubMed ID: 24435811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis.
    Marín G; Mpodozis J; Sentis E; Ossandón T; Letelier JC
    J Neurosci; 2005 Jul; 25(30):7081-9. PubMed ID: 16049185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus).
    Wang Y; Major DE; Karten HJ
    J Comp Neurol; 2004 Feb; 469(2):275-97. PubMed ID: 14694539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigeons.
    Hellmann B; Manns M; Güntürkün O
    J Comp Neurol; 2001 Jul; 436(2):153-66. PubMed ID: 11438921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons.
    Nasirova N; Quina LA; Agosto-Marlin IM; Ramirez JM; Lambe EK; Turner EE
    J Comp Neurol; 2020 Feb; 528(2):283-307. PubMed ID: 31396962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The topographical projection of the nucleus isthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon.
    Güntürkün O; Remy M
    Neurosci Lett; 1990 Mar; 111(1-2):18-22. PubMed ID: 2336184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry.
    Ichikawa T; Ajiki K; Matsuura J; Misawa H
    J Chem Neuroanat; 1997 Jun; 13(1):23-39. PubMed ID: 9271193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical characterisation of cholinergic neurons in the anterior pelvic ganglion of the male pig.
    Kaleczyc J; Wasowicz K; Klimczuk M; Czaja K; Lakomy M
    Folia Histochem Cytobiol; 2003; 41(2):65-72. PubMed ID: 12722791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segregation of met-enkephalin from vesicular acetylcholine transporter and choline acetyltransferase in sympathetic preganglionic varicosities mostly lacking synaptophysin and synaptotagmin.
    Sámano C; Zetina ME; Cifuentes F; Morales MA
    Neuroscience; 2009 Sep; 163(1):180-9. PubMed ID: 19524025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia.
    Oliveira AL; Hydling F; Olsson E; Shi T; Edwards RH; Fujiyama F; Kaneko T; Hökfelt T; Cullheim S; Meister B
    Synapse; 2003 Nov; 50(2):117-29. PubMed ID: 12923814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters.
    Gritti I; Henny P; Galloni F; Mainville L; Mariotti M; Jones BE
    Neuroscience; 2006 Dec; 143(4):1051-64. PubMed ID: 17084984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurochemical coding compared between varicose axons and cell bodies of myenteric neurons in the guinea-pig ileum.
    Sharrad DF; Chen BN; Brookes SJ
    Neurosci Lett; 2013 Feb; 534():171-6. PubMed ID: 23123789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cholinergic gating mechanism controlled by competitive interactions in the optic tectum of the pigeon.
    Marín G; Salas C; Sentis E; Rojas X; Letelier JC; Mpodozis J
    J Neurosci; 2007 Jul; 27(30):8112-21. PubMed ID: 17652602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ramifications and terminals of optic fibres in layers 2 and 3 of the avian optic tectum: a golgi and light and electron microscopic anterograde tracer study.
    Tömböl T; Eyre M; Zayats N; Németh A
    Cells Tissues Organs; 2003; 175(4):202-22. PubMed ID: 14707401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.