BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34363675)

  • 21. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data.
    Wu H; Wang C; Wu Z
    Biostatistics; 2013 Apr; 14(2):232-43. PubMed ID: 23001152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model.
    Xiao J; Xu Q; Wu C; Gao Y; Hua T; Xu C
    PLoS One; 2016; 11(8):e0161112. PubMed ID: 27552203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing.
    Leong SH; Ong SH
    PLoS One; 2017; 12(7):e0180307. PubMed ID: 28686634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder.
    Zhao JP; Hou TS; Su Y; Zheng CH
    Methods; 2022 Dec; 208():66-74. PubMed ID: 36377123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical Inference for Clustering Results Interpretation in Clinical Practice.
    Kanonirov A; Balabaeva K; Kovalchuk S
    Stud Health Technol Inform; 2021 Oct; 285():100-105. PubMed ID: 34734858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Negative binomial additive model for RNA-Seq data analysis.
    Ren X; Kuan PF
    BMC Bioinformatics; 2020 May; 21(1):171. PubMed ID: 32357831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directionally dependent multi-view clustering using copula model.
    Afrin K; Iquebal AS; Karimi M; Souris A; Lee SY; Mallick BK
    PLoS One; 2020; 15(10):e0238996. PubMed ID: 33095785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A latent class distance association model for cross-classified data with a categorical response variable.
    Vera JF; de Rooij M; Heiser WJ
    Br J Math Stat Psychol; 2014 Nov; 67(3):514-40. PubMed ID: 24661132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments.
    Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR
    BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian inference of gene expression states from single-cell RNA-seq data.
    Breda J; Zavolan M; van Nimwegen E
    Nat Biotechnol; 2021 Aug; 39(8):1008-1016. PubMed ID: 33927416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dirichlet process mixture models for single-cell RNA-seq clustering.
    Adossa NA; Rytkönen KT; Elo LL
    Biol Open; 2022 Apr; 11(4):. PubMed ID: 35237784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the accuracy and internal consistency of regression-based clustering of high-dimensional datasets.
    Zhang B; He J; Hu J; Chalise P; Koestler DC
    Stat Appl Genet Mol Biol; 2023 Jan; 22(1):. PubMed ID: 37489035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization.
    Kim S; Oesterreich S; Kim S; Park Y; Tseng GC
    Biostatistics; 2017 Jan; 18(1):165-179. PubMed ID: 27549122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clustering Results Interpretation of Continuous Variables Using Bayesian Inference.
    Balabaeva K; Kovalchuk S
    Stud Health Technol Inform; 2021 May; 281():477-481. PubMed ID: 34042610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting Meaningful Clusters From High-Dimensional Data: A Strongly Consistent Sparse Center-Based Clustering Approach.
    Chakraborty S; Das S
    IEEE Trans Pattern Anal Mach Intell; 2022 Jun; 44(6):2894-2908. PubMed ID: 33360985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm.
    Chen L; Wang W; Zhai Y; Deng M
    Front Genet; 2020; 11():295. PubMed ID: 32362908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On Penalty Parameter Selection for Estimating Network Models.
    Wysocki AC; Rhemtulla M
    Multivariate Behav Res; 2021; 56(2):288-302. PubMed ID: 31672065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.