These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34363860)

  • 21. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ gel-forming system: an attractive alternative for nasal drug delivery.
    Wang X; Liu G; Ma J; Guo S; Gao L; Jia Y; Li X; Zhang Q
    Crit Rev Ther Drug Carrier Syst; 2013; 30(5):411-34. PubMed ID: 24099327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of in vitro release models in formulation development and quality control of parenteral depots.
    Larsen C; Larsen SW; Jensen H; Yaghmur A; Ostergaard J
    Expert Opin Drug Deliv; 2009 Dec; 6(12):1283-95. PubMed ID: 19941410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging.
    Solorio L; Olear AM; Hamilton JI; Patel RB; Beiswenger AC; Wallace JE; Zhou H; Exner AA
    Theranostics; 2012; 2(11):1064-77. PubMed ID: 23227123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery.
    Thakur RR; Fallows SJ; McMillan HL; Donnelly RF; Jones DS
    J Pharm Pharmacol; 2014 Apr; 66(4):584-95. PubMed ID: 24127904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asenapine maleate in situ forming biodegradable implant: an approach to enhance bioavailability.
    Avachat AM; Kapure SS
    Int J Pharm; 2014 Dec; 477(1-2):64-72. PubMed ID: 25305379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide.
    Sheshala R; Hong GC; Yee WP; Meka VS; Thakur RRS
    Drug Deliv Transl Res; 2019 Apr; 9(2):534-542. PubMed ID: 29484530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of injection site on in situ implant formation and drug release in vivo.
    Patel RB; Solorio L; Wu H; Krupka T; Exner AA
    J Control Release; 2010 Nov; 147(3):350-8. PubMed ID: 20728486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the Subcutaneous Environment on Phase-Sensitive In Situ-Forming Implant Drug Release, Degradation, and Microstructure.
    Solorio L; Exner AA
    J Pharm Sci; 2015 Dec; 104(12):4322-4328. PubMed ID: 26506522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI.
    Hopkins KA; Vike N; Li X; Kennedy J; Simmons E; Rispoli J; Solorio L
    J Control Release; 2019 Sep; 309():289-301. PubMed ID: 31323243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An overview of PLGA
    Ibrahim TM; El-Megrab NA; El-Nahas HM
    Pharm Dev Technol; 2021 Sep; 26(7):709-728. PubMed ID: 34176433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymeric and Non Polymeric Injectable In-situ Forming Implant Systems for Sustained Delivery of Lornoxicam: In vitro and In vivo Evaluation.
    Yehia SA; Halim SAA; Aziz MY
    Curr Drug Deliv; 2018; 15(8):1193-1203. PubMed ID: 29557743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput in vitro drug release and pharmacokinetic simulation as a tool for drug delivery system development: application to intravitreal ocular administration.
    Sarkhel S; Ramsay E; Kontturi LS; Peltoniemi J; Urtti A
    Int J Pharm; 2014 Dec; 477(1-2):469-75. PubMed ID: 25445526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems.
    Jug M; Hafner A; Lovrić J; Kregar ML; Pepić I; Vanić Ž; Cetina-Čižmek B; Filipović-Grčić J
    J Pharm Biomed Anal; 2018 Jan; 147():350-366. PubMed ID: 28720350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of in vitro-in vivo correlations for long-acting injectable suspensions.
    Bao Q; Wang X; Wan B; Zou Y; Wang Y; Burgess DJ
    Int J Pharm; 2023 Mar; 634():122642. PubMed ID: 36709013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Forming Depot as Sustained-Release Drug Delivery Systems.
    Kanwar N; Sinha VR
    Crit Rev Ther Drug Carrier Syst; 2019; 36(2):93-136. PubMed ID: 30806210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging.
    Schädlich A; Kempe S; Mäder K
    J Control Release; 2014 Apr; 179():52-62. PubMed ID: 24503251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinically established biodegradable long acting injectables: An industry perspective.
    Nkanga CI; Fisch A; Rad-Malekshahi M; Romic MD; Kittel B; Ullrich T; Wang J; Krause RWM; Adler S; Lammers T; Hennink WE; Ramazani F
    Adv Drug Deliv Rev; 2020 Dec; 167():19-46. PubMed ID: 33202261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.