These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34364261)

  • 1. Application of quasi-SMILES to the model of gold-nanoparticles uptake in A549 cells.
    Toropova AP; Toropov AA; Leszczynska D; Leszczynski J
    Comput Biol Med; 2021 Sep; 136():104720. PubMed ID: 34364261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES.
    Leone C; Bertuzzi EE; Toropova AP; Toropov AA; Benfenati E
    Chemosphere; 2018 Nov; 210():52-56. PubMed ID: 29986223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The system of self-consistent models based on quasi-SMILES as a tool to predict the potential of nano-inhibitors of human lung carcinoma cell line A549 for different experimental conditions.
    Toropova AP; Meneses J; Alfaro-Moreno E; Toropov AA
    Drug Chem Toxicol; 2024 May; 47(3):306-313. PubMed ID: 36744523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data.
    Toropova AP; Toropov AA
    J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-SMILES as a basis to build up models of endpoints for nanomaterials.
    Toropova AP; Toropov AA
    Environ Technol; 2023 Dec; 44(28):4460-4467. PubMed ID: 35748421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials.
    Toropov AA; Rallo R; Toropova AP
    Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions.
    Toropov AA; Toropova AP
    Chemosphere; 2015 Nov; 139():18-22. PubMed ID: 26026259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-SMILES as a basis for the development of models for the toxicity of ZnO nanoparticles.
    Toropov AA; Toropova AP
    Sci Total Environ; 2021 Jun; 772():145532. PubMed ID: 33578164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES.
    Toropova AP; Toropov AA; Fjodorova N
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
    Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-SMILES: Self-consistent models for toxicity of organic chemicals to tadpoles.
    Toropov AA; Di Nicola MR; Toropova AP; Roncaglioni A; Dorne JLCM; Benfenati E
    Chemosphere; 2023 Jan; 312(Pt 1):137224. PubMed ID: 36375610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of quasi-SMILES to build models based on quantitative results from experiments with nanomaterials.
    Toropov AA; Kjeldsen F; Toropova AP
    Chemosphere; 2022 Sep; 303(Pt 2):135086. PubMed ID: 35618064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-SMILES: quantitative structure-activity relationships to predict anticancer activity.
    Toropova AP; Toropov AA
    Mol Divers; 2019 May; 23(2):403-412. PubMed ID: 30306392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells.
    Trinh TX; Choi JS; Jeon H; Byun HG; Yoon TH; Kim J
    Chem Res Toxicol; 2018 Mar; 31(3):183-190. PubMed ID: 29439565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
    Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of antimicrobial activity of large pool of peptides using quasi-SMILES.
    Toropova AP; Toropov AA; Benfenati E; Leszczynska D; Leszczynski J
    Biosystems; 2018 Jul; 169-170():5-12. PubMed ID: 29800627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co
    Toropova AP; Toropov AA; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2017 May; 139():404-407. PubMed ID: 28192776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. coral Software: QSAR for Anticancer Agents.
    Benfenati E; Toropov AA; Toropova AP; Manganaro A; Gonella Diaza R
    Chem Biol Drug Des; 2011 Jun; 77(6):471-6. PubMed ID: 21435183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions.
    Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Benfenati E; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2016 Feb; 124():32-36. PubMed ID: 26452192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions.
    Toropova AP; Toropov AA; Leszczynski J; Sizochenko N
    Environ Toxicol Pharmacol; 2021 Aug; 86():103665. PubMed ID: 33895354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.