These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34364322)
1. Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas. Dornheim T; Moldabekov ZA; Vorberger J J Chem Phys; 2021 Aug; 155(5):054110. PubMed ID: 34364322 [TBL] [Abstract][Full Text] [Related]
2. Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations. Dornheim T; Vorberger J; Moldabekov ZA; Böhme M Philos Trans A Math Phys Eng Sci; 2023 Aug; 381(2253):20220217. PubMed ID: 37393936 [TBL] [Abstract][Full Text] [Related]
3. Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations. Dornheim T; Vorberger J Phys Rev E; 2020 Dec; 102(6-1):063301. PubMed ID: 33466040 [TBL] [Abstract][Full Text] [Related]
4. Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter. Dornheim T; Groth S; Vorberger J; Bonitz M Phys Rev Lett; 2018 Dec; 121(25):255001. PubMed ID: 30608805 [TBL] [Abstract][Full Text] [Related]
5. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. Dornheim T; Vorberger J; Groth S; Hoffmann N; Moldabekov ZA; Bonitz M J Chem Phys; 2019 Nov; 151(19):194104. PubMed ID: 31757143 [TBL] [Abstract][Full Text] [Related]
6. Permutation-blocking path-integral Monte Carlo approach to the static density response of the warm dense electron gas. Dornheim T; Groth S; Vorberger J; Bonitz M Phys Rev E; 2017 Aug; 96(2-1):023203. PubMed ID: 28950530 [TBL] [Abstract][Full Text] [Related]
8. Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter. Dornheim T Phys Rev E; 2019 Aug; 100(2-1):023307. PubMed ID: 31574603 [TBL] [Abstract][Full Text] [Related]
9. Fermionic physics from ab initio path integral Monte Carlo simulations of fictitious identical particles. Dornheim T; Tolias P; Groth S; Moldabekov ZA; Vorberger J; Hirshberg B J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37888764 [TBL] [Abstract][Full Text] [Related]
10. Static Electronic Density Response of Warm Dense Hydrogen: Ab Initio Path Integral Monte Carlo Simulations. Böhme M; Moldabekov ZA; Vorberger J; Dornheim T Phys Rev Lett; 2022 Aug; 129(6):066402. PubMed ID: 36018668 [TBL] [Abstract][Full Text] [Related]
11. Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: Structural properties. Dornheim T; Schwalbe S; Böhme MP; Moldabekov ZA; Vorberger J; Tolias P J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666571 [TBL] [Abstract][Full Text] [Related]
12. Configuration path integral Monte Carlo approach to the static density response of the warm dense electron gas. Groth S; Dornheim T; Bonitz M J Chem Phys; 2017 Oct; 147(16):164108. PubMed ID: 29096453 [TBL] [Abstract][Full Text] [Related]
13. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions. Böhme M; Moldabekov ZA; Vorberger J; Dornheim T Phys Rev E; 2023 Jan; 107(1-2):015206. PubMed ID: 36797933 [TBL] [Abstract][Full Text] [Related]
14. Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations. Dornheim T; Tolias P; Moldabekov ZA; Cangi A; Vorberger J J Chem Phys; 2022 Jun; 156(24):244113. PubMed ID: 35778089 [TBL] [Abstract][Full Text] [Related]
15. Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature. Dornheim T; Schoof T; Groth S; Filinov A; Bonitz M J Chem Phys; 2015 Nov; 143(20):204101. PubMed ID: 26627944 [TBL] [Abstract][Full Text] [Related]
16. Path integral Monte Carlo approach to the structural properties and collective excitations of liquid [Formula: see text] without fixed nodes. Dornheim T; Moldabekov ZA; Vorberger J; Militzer B Sci Rep; 2022 Jan; 12(1):708. PubMed ID: 35027602 [TBL] [Abstract][Full Text] [Related]
17. Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties. Dornheim T; Groth S; Filinov AV; Bonitz M J Chem Phys; 2019 Jul; 151(1):014108. PubMed ID: 31272157 [TBL] [Abstract][Full Text] [Related]
18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
19. Ab Initio Thermodynamic Results for the Degenerate Electron Gas at Finite Temperature. Schoof T; Groth S; Vorberger J; Bonitz M Phys Rev Lett; 2015 Sep; 115(13):130402. PubMed ID: 26451539 [TBL] [Abstract][Full Text] [Related]
20. Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas. Brown EW; Clark BK; DuBois JL; Ceperley DM Phys Rev Lett; 2013 Apr; 110(14):146405. PubMed ID: 25167016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]